• Title/Summary/Keyword: calvarial bone

Search Result 286, Processing Time 0.023 seconds

Effects of DSG on Osteoblastic Cell from Rat Calvariae in the Presence of Dexamethasone (단치소요산가미방이 Dexamethasone 처리한 랫드의 두개골 세포에 미치는 영향)

  • Park, Jong-Hyeong;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.2
    • /
    • pp.19-30
    • /
    • 2006
  • It is well known that glucocorticoid may induce osteoporosis as its side effect in long-term therapy. The inhibition of osteoblast by glucocorticoid is also recognized as its action mechanism of decreased bone formation. In this study, the effect of DSG, Danchisoyosangamibang, on the differentiation and function of osteoblastic cells was investigated. The osteoblastic cells were isolated from rat calvariae using collagenase treatment. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, intracellular alkaline phosphatase (ALP) activity, bone martrix production, and cell apoptosis. DSG enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracelluar collagen synthesis were increased time dependently when the cells were treated with DSG in the presence of dexamethasone. And, DSG restored calvarial cell function decreased by dexamethasone.

  • PDF

Primary Osteolytic Intraosseous Atypical Meningioma with Soft Tissue and Dural Invasion : Report of a Case and Review of Literatures

  • Yun, Jung-Ho;Lee, Sang-Koo
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.509-512
    • /
    • 2014
  • Primary intraosseous meningioma is a rare tumor, and atypical pathologic components both osteolytic lesion and dura and soft tissue invasion is extremely rare. A 65-year-old woman presented with a 5-month history of a soft mass on the right frontal area. MR imaging revealed a 4 cm sized, multilobulated, strongly-enhancing lesion on the right frontal bone, and CT showed a destructive skull lesion. The mass was adhered tightly to the scalp and dura mater, and it extended to some part of the outer and inner dural layers without brain invasion. The extradural mass and soft tissue mass were totally removed simultaneously and we reconstructed the calvarial defect with artificial bone material. The pathological study revealed an atypical meningioma as World Health Organization grade II. Six months after the operation, brain MR imaging showed that not found recurrence in both cranial and spinal lesion. Here, we report a case of primary osteolytic intraosseous atypical meningioma with soft tissue and dural invasion.

THE CORONAL APPROACH;ANATOMY, TECHNICAL CONSIDERATIONS AND MORBIDITIES (관상피판술;해부학, 수술시 고려사항, 병적인 상태)

  • Lee, Gi-Hyug;Yeo, Hwan-Ho;Kim, Young-Kyun;Kim, Su-Gwan;Park, No-Seung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.4
    • /
    • pp.615-620
    • /
    • 1996
  • The coronal approach is a versatile surgical technique. This method becomes particulary useful for exposure and internal fixation of midfacial fractures and the harvest of calvarial bone graft to manage the complex facial bone fractures. The rectrospective clinical study on the use of this technique in 10 patients was performed. The result shows that this technique provides the excellent exposure of fractures site, the ability to reduce the fragment accurately and good cosmetic results in incision area. We discussed with literatures review that anatomy, technique, indications, and potential complications of the coronal approach.

  • PDF

Multilobular Tumor of Skull in a Maltese Dog (말티즈 견의 두개골에서 발생한 다엽성 종양)

  • Yang, Cheol-ho;Kang, Min-hee;Kim, Seung-gon
    • Journal of Veterinary Clinics
    • /
    • v.33 no.1
    • /
    • pp.48-50
    • /
    • 2016
  • A 10-year-old spayed female Maltese dog weighting 3.4 kg was referred with growing firm mass at the parietal bone region from 2 weeks ago. A firm, partially calcified mass ($1.9cm{\times}4.4cm$) was palpated in the region of the frontal and parietal skulls but had no neurologic signs. Computed tomography (CT) characteristics of mass were round to oval shape, fine granular appearance, and well defined margins. Mass involving the calvarial bones had invasion into the cranial vault with a significant intracranial portion. Histologically, the tumor was characterized by the presence of multiple lobules containing osteoid or cartilage in the center that were separated by anastomosing fibrous septae. This is case report described the clinical and histopathological features of multilobular tumor of skull in a Maltese dog.

Effects of JY on Osteoblastic Cell from Rat Calvariae in the Presence of Glucocorticoid (자혈양근탕(滋血養筋湯)이 부신피질호르몬에 의해 억제된 조골세포 기능에 미치는 영향)

  • Choi, Jeong-Sin;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.2
    • /
    • pp.197-206
    • /
    • 2008
  • The inhibition of osteoblast by glucocorticoid is recognized as its action mechanism of decreased bone formation. In this study, the effect of JY, Jahyulyangkeuntang, on the differentiation and mineralization of osteoblastic cells was investigated in the presence of dexamethasone. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, alkaline phosphatase(ALP) activity, bone martrix production, and cell apoptosis. JY enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracellular collagen synthesis were increased when the cells were treated with JY. And JY restored calvarial cell function decreased by dexamethasone.

  • PDF

Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model

  • Baek, Young-jae;Kim, Jung-Han;Song, Jae-Min;Yoon, Sang-Yong;Kim, Hong-Sung;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.14.1-14.6
    • /
    • 2016
  • Background: In guided bone regeneration (GBR) technique, many materials have been used for improving biological effectiveness by adding on membranes. The new membrane which was constructed with chitin-fibroin-hydroxyapatite (CNF/HAP) was compared with a collagen membrane (Bio-$Gide^{(R)}$) by means of micro-computed tomography. Methods: Fifty-four rats were used in this study. A critical-sized (8 mm) bony defect was created in the calvaria with a trephine bur. The CNF/HAP membrane was prepared by thermally induced phase separation. In the experimental group (n = 18), the CNF/HAP membrane was used to cover the bony defect, and in the control group (n = 18), a resorbable collagen membrane (Bio-$Gide^{(R)}$) was used. In the negative control group (n = 18), no membrane was used. In each group, six animals were euthanized at 2, 4, and 8 weeks after surgery. The specimens were analyzed using micro-CT. Results: Bone volume (BV) and bone mineral density (BMD) of the new bone showed significant difference between the negative control group and membrane groups (P < 0.05). However, between two membranes, the difference was not significant. Conclusions: The CNF/HAP membrane has significant effect on the new bone formation and has the potential to be applied for guided bone regeneration.

Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration

  • Kim, Seong-Gon;Kim, Min-Keun;Kweon, HaeYong;Jo, You-Young;Lee, Kwang-Gill;Lee, Jeong Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.11.1-11.8
    • /
    • 2016
  • Background: Silk cocoon is composed of multiple layers. The natural silk cocoon containing all layers was cut as a rectangular shape as defined as total group. The inner and outermost layers were removed from the total group and the remained mat was defined as the middle group. The objectives of this study was to compare the total group with the middle group as a barrier membrane for the guided bone regeneration. Methods: The effects of these materials on the cellular proliferation and alkaline phosphatase (ALP) expression of MG63 cells were explored. For comparing bone regeneration ability, bilateral bone defects were created in calvarial areas in ten adult New Zealand white rabbits. The defects were covered with silk membranes of the middle group, with silk membrane of the total group used as the control on the contralateral side. The defects were allowed to heal for 4 and 8 weeks. Micro-computerized tomography (${\mu}CT$) and histological examination were performed. Results: The middle group exhibited a higher MTT value 48 and 72 h after treatment compared to the total group. ALP expression was also higher in the middle group. The results of ${\mu}CT$ and histologic examination showed that new bone formation was significantly higher in the middle group compared to the total group 8 weeks postoperatively (P < 0.05). Conclusions: In conclusion, the middle layer of the silk cocoon supports guided bone regeneration better than unprocessed silk cocoon.

Comparative analysis of carrier systems for delivering bone morphogenetic proteins

  • Jung, Im-Hee;Lim, Hyun-Chang;Lee, Eun-Ung;Lee, Jung-Seok;Jung, Ui-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.4
    • /
    • pp.136-144
    • /
    • 2015
  • Purpose: The objective of this study was to comparatively assess the bone regenerative capacity of absorbable collagen sponge (ACS), biphasic calcium phosphate block (BCP) and collagenated biphasic calcium phosphate (CBCP) loaded with a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). Methods: The CBCP was characterized by X-ray diffraction and scanning electron microscopy. In rabbit calvaria, four circular 8-mm-diameter defects were created and assigned to one of four groups: (1) blood-filled group (control), (2) rhBMP-2-soaked absorbable collagen sponge (0.05 mg/mL, 0.1 mL; CS group), (3) rhBMP-2-loaded BCP (BCP group), or (4) rhBMP-2-loaded CBCP (CBCP group). The animals were sacrificed either 2 weeks or 8 weeks postoperatively. Histological and histomorphometric analyses were performed. Results: The CBCP showed web-like collagen fibrils on and between particles. Greater dimensional stability was observed in the BCP and CBCP groups than in the control and the CS groups at 2 and 8 weeks. The new bone formation was significantly greater in the BCP and CBCP groups than in the control and CS groups at 2 weeks, but did not significantly differ among the four groups at 8 week. The CBCP group exhibited more new bone formation in the intergranular space and in the center of the defect compared to the BCP group at 2 weeks, but a similar histologic appearance was observed in both groups at 8 weeks. Conclusions: The dose of rhBMP-2 in the present study enhanced bone regeneration in the early healing period when loaded on BCP and CBCP in rabbit calvarial defects.

Diverse patterns of bone regeneration in rabbit calvarial defects depending on the type of collagen membrane

  • Hong, Inpyo;Khalid, Alharthi Waleed;Pae, Hyung-Chul;Song, Young Woo;Cha, Jae-Kook;Lee, Jung-Seok;Paik, Jeong-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.1
    • /
    • pp.40-52
    • /
    • 2021
  • Purpose: Various crosslinking methods have been introduced to increase the longevity of collagen membranes. The aim of this study was to compare and evaluate the degradation and bone regeneration patterns of 3 collagen membranes. Methods: Four 8-mm-diameter circular bone defects were created in the calvaria of 10 rabbits. In each rabbit, each defect was randomly allocated to 1) the sham control group, 2) the non-crosslinked collagen sponge (NS) group, 3) the chemically crosslinked collagen membrane (CCM) group, or 4) the biphasic calcium phosphate (BCP)-supplemented ultraviolet (UV)-crosslinked collagen membrane (UVM) group. Each defect was covered with the allocated membrane without any graft material. Rabbits were sacrificed at either 2 or 8 weeks post-surgery, and radiographic and histologic analyses were done. Results: New bone formed underneath the membrane in defects in the CCM and UVM groups, with a distinctive new bone formation pattern, while new bone formed from the base of the defect in the NS and control groups. The CCM maintained its shape until 8 weeks, while the UVM and NS were fully degraded at 8 weeks; simultaneously, sustained inflammatory infiltration was found in the margin of the CCM, while it was absent in the UVM. In conclusion, the CCM showed longer longevity than the UVM, but was accompanied by higher levels of inflammation. Conclusions: Both the CCM and UVM showed distinctive patterns of enhancement in new bone formation in the early phase. UV crosslinking can be a biocompatible alternative to chemical crosslinking.