• Title/Summary/Keyword: call dropping probability

Search Result 39, Processing Time 0.025 seconds

Resource Reservation Scheme for Handoff Calls in the CDMA Cellular System using Multiple Frequency Channels (다중 주파수 채널을 사용한는 CDMA 셀룰러 이동통신시스템에서 핸드오프호를 위한 예약 할당 방법)

  • 권수근;전형구;조경록
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.1-9
    • /
    • 1997
  • Soft handoff provided in CDMA cellular system has much advantage such as better service quality, interference control and low call dropping probability. In this paepr, we propose an optimum resource reservationscheme for handoff calls in the CDMA cellular system to increase the soft handoff probability in handoff. In the proposed scheme, resources of each frquency channel are reserved for handoff according to the number of its neighbot cells serving the same frequency channel. A performance analysis shows that the soft handoff probability of the proposed scheme is higher than that of conventional scheme disregarding the condition of frquency assignment of neighbot cells, and that ever frequency channel served by neighbor cells should reserve more than one traffic channel for handoff to get good performance.

  • PDF

Performance Analysis of Population-Based Bandwidth Reservation Scheme with Various Request Reservation Ratios (요청 예약 비율에 따른 Population-Based Bandwidth Reservation 구조의 성능 분석)

  • Kwon, Se-Dong;Han, Man-Yoo;Park, Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.385-398
    • /
    • 2002
  • To accommodate the increasing number of mobile terminals in the limited radio spectrum, wireless systems have been designed as micro/picocellular architectures for a higher capacity. This reduced coverage area of a cell has caused a higher rate of hand-off events, and the hand-off technology for efficient process becomes a necessity to provide a stable service. Population-based Bandwidth Reservation(PBR) Scheme is proposed to provide prioritized handling for hand-off calls by dynamically adjusting the amount of reserved bandwidth of a cell according to the amount of cellular traffic in its neighboring cells. We analyze the performance of the PBR scheme according to the changes of a fractional parameter, f, which is the ratio of request reservation to the total amount of bandwidth units required for hand-off calls that will occur for the next period. The vague of this parameter, f should be determined based on QoS(Quality of Service) requirement. To meet the requirement the value of Parameter(f) must be able to be adjusted dynamically according to the changing traffic conditions. The best value of f can be determined by a function of the average speed of mobile stations, average call duration, cell size, and so on. This paper considers the average call duration and the cell size according to the speed of mobile stations. Although some difference exists as per speed, in the range of 0.4 $\leq$ f $\leq$ 0.6, Blocking Probability, Dropping Probability and Utilization show the best values.

Performance Analysis of a Packet Voice Multiplexer Using the Overload Control Strategy by Bit Dropping (Bit-dropping에 의한 Overload Control 방식을 채용한 Packet Voice Multiplexer의 성능 분석에 관한 연구)

  • 우준석;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.110-122
    • /
    • 1993
  • When voice is transmitted through packet switching network, there needs a overload control, that is, a control for the congestion which lasts short periods and occurrs in local extents. In this thesis, we analyzed the performance of the statistical packet voice multiplexer using the overload control strategy by bit dropping. We assume that the voice is coded accordng to (4,2) embedded ADPCM and that the voice packet is generated and transmitted according to the procedures in the CCITT recomendation G. 764. For the performance analysis, we must model the superposed packet arrival process to the multiplexer as exactly as possible. It is well known that interarrival times of the packets are highly correlated and for this reason MMPP is more suited for the modelling in the viewpoint of accuracy. Hence the packet arrival process in modeled as MMPP and the matrix geometric method is used for the performance analysis. Performance analysis is similar to the MMPP IG II queueing system. But the overload control makes the service time distribution G dependent on system status or queue length in the multiplexer. Through the performance analysis we derived the probability generating function for the queue length and using this we derived the mean and standard deviation of the queue length and waiting time. The numerical results are verified through the simulation and the results show that the values embedded in the departure times and that in the arbitrary times are almost the same. Results also show bit dropping reduces the mean and the variation of the queue length and those of the waiting time.

  • PDF

Multi-agent Q-learning based Admission Control Mechanism in Heterogeneous Wireless Networks for Multiple Services

  • Chen, Jiamei;Xu, Yubin;Ma, Lin;Wang, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2376-2394
    • /
    • 2013
  • In order to ensure both of the whole system capacity and users QoS requirements in heterogeneous wireless networks, admission control mechanism should be well designed. In this paper, Multi-agent Q-learning based Admission Control Mechanism (MQACM) is proposed to handle new and handoff call access problems appropriately. MQACM obtains the optimal decision policy by using an improved form of single-agent Q-learning method, Multi-agent Q-learning (MQ) method. MQ method is creatively introduced to solve the admission control problem in heterogeneous wireless networks in this paper. In addition, different priorities are allocated to multiple services aiming to make MQACM perform even well in congested network scenarios. It can be observed from both analysis and simulation results that our proposed method not only outperforms existing schemes with enhanced call blocking probability and handoff dropping probability performance, but also has better network universality and stability than other schemes.

Determination of Optimal Cell Capacity for Initial Cell Planning in Wireless Cellular Networks

  • Hwang, Young-Ha;Noh, Sung-Kee;Kim, Sang-Ha
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.88-94
    • /
    • 2006
  • In wireless cellular networks, previous researches on admission control policies and resource allocation algorithm considered the QoS (Quality of Service) in terms of CDP (Call Dropping Probability) and CBP (Call Blocking Probability). However, since the QoS was considered only within a predetermined cell capacity, the results indicated a serious overload problem of systems not guaranteeing both CDP and CBP constraints, especially in the hotspot cell. That is why a close interrelationship between CDP, CBP and cell capacity exists. Thus, it is indispensable to consider optimal cell capacity guaranteeing multiple QoS (CDP and CBP) at the time of initial cell planning for networks deployment. In this paper, we will suggest a distributed determination scheme of optimal cell capacity guaranteeing both CDP and CBP from a long-term perspective for initial cell planning. The cell-provisioning scheme is performed by using both the two-dimensional continuous-time Markov chain and an iterative method called the Gauss-Seidel method. Finally, numerical and simulation results will demonstrate that our scheme successfully determines an optimal cell capacity guaranteeing both CDP and CBP constraints for initial cell planning.

A Mechanism for Call Admission Control using User's Mobility Pattern in Mobile Multimedia Computin Environment (이동 멀티미디어 컴퓨팅 환경에서 사용자의 이동성 패턴을 이용한 호 수락 제어 메커니즘)

  • Choi, Chang-Ho;Kim, Sung-Jo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2002
  • The most important issue in providing multimedia traffic on a mobile computing environments is to guarantee the mobile host(client) with consistent QoS(Quality of Service). However, the QoS negotiated between the client and network in one cell may not be honored due to client mobility, causing hand-offs between cells. In this paper, a call admission control mechanism is proposed to provide consistent QoS guarantees for multimedia traffics in a mobile computing environment. Each cell can reserve fractional bandwidths for hand-off calls to its adjacent cells. It is important to determine the right amount of reserved bandwidth for hand-off calls because the blocking probability of new calls may increase if the amount of reserved bandwidth is more than necessary. An adaptive bandwidth reservation based on an MPP(Mobility Pattern Profile) and a 2-tier cell structure has been proposed to determine the amount of bandwidth to be reserved in the cell and to control dynamically its amount based on its network condition. We also propose a call admission control based on this bandwidth reservation and "next-cell prediction" scheme using an MPP. In order to evaluate the performance of our call admission control mechanism, we measure the metrics such as the blocking probability of our call admission control mechanism, we measure the metrics such as the blocking probability of new calls, dropping probability of hand-off calls, and bandwidth utilization. The simulation results show that the performance of our mechanism is superior to that of the existing mechanisms such as NR-CAT1, FR-CAT1, and AR-CAT1.

Study of efficient resource utilization on the wireless mobile networks (이동 통신망 무선자원의 효율적 이용에 관한 연구)

  • Lee, Jong-Hee;Jang, Seong-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.401-404
    • /
    • 2003
  • In most resource reservation strategies, which give higher priorities to handoff calls over new calls, new calls are often blocked even though there is plenty of available reserved resource. This causes inefficient resource utilization, especially when there are not so many handoff attempts. In this paper, we propose a new reservationstrategy called soft reservation in which new calls can be allocated to the reserved resource while maintaining the QoS of handoff acceptable. Using an M/M/c/c queuing model, we can see that the proposed strategy provides better performance than the conventional reservation strategy in terms of blocking probability of new call and dropping probability of handoff calls.

  • PDF

A Hand-off Algorithm for Performance Improvement in the Reuse Partitioning Systems (재사용 분할 시스템에서 성능 개선을 위한 핸드오프 알고리즘)

  • Lee, Young-Chul;Kim, Min-Hong;Lim, Jae-Sung;Kimn, Ha-Jine
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.437-445
    • /
    • 2000
  • The reuse partitioning system in microcellular networks are dropped performance of system because of increase hand-off of high-speed terminal. In this paper, we propose hand-off algorithm to improve the performance of reuse partitioning system using microcell according to the ratio of traffic distribution between innercell and outercell from resource management of high-speed and slowspeed terminal. Also, we compare to RPS and evaluate the teletraffic performance analysis of high-speed and slow-speed terminal through computer simulations that we derive the hand-off probability, call dropping probability.

  • PDF

Performance Analysis of AAL2 Packet Dropping Algorithm using PDV on Virtual Buffer (PDV를 이용한 가상 버퍼상의 AAL2 패킷 폐기 알고리즘과 성능분석)

  • Jeong, Da-Wi;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.1
    • /
    • pp.20-33
    • /
    • 2002
  • Usage of ATM AAL2 packets becomes dominant to increase transmission efficiency of voice traffic in the backbone network. In case of voice service that uses AAL2 mechanism, if resources of network are enough, connection of new call is accepted. However, due to packets generated by the new call, transmission delay of packets from old calls can increase sharply. To control this behavior, in this paper we present an AAL2 buffer management scheme that allocates a virtual buffer to each call and after calculating its propagation delay variation(PDV), decides to drop packets coming from each call according to the PDV value. We show that this packet dropping algorithm can effectively prevent abrupt QoS degradation of old calls. To do this, we analyze AAL2 packet composition process to find a critical factor in the process that influences the end-to-end delay behavior and model the process by K-policy M/D/1 queueing system and MIN(K, Tc)-policy M/D/1 queueing system. From the mathematical model, we derive the probability generating function of AAL2 packets in the buffer and mean waiting time of packets in the AAL2 buffer. Analytical results show that the AAL2 packet dropping algorithm can provide stable AAL2 packetization delay and ATM cell generation time even if the number of voice sources increases dramatically. Finally we compare the analytical result to simulation data obtained by using the COMNET Ⅲ package.

A Routing Scheme for Multi-Classes in Multi-hop LEO Satellite Networks with Inter-Satellite Links (위성간 링크를 가지는 다중 홉 저궤도 위성망에서 멀티 클래스 지원을 위한 경로 배정 기법)

  • Lee, Bong-Ju;Kim, Young-Chon
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.80-87
    • /
    • 2003
  • This paper proposes a routing scheme for multi-hop LEO satellite networks with inter-satellite links aiming for reducing the number of link handovers while keeping the efficient use of network resource. The proposed routing scheme controls the link handovers by taking account of the deterministic LEO satellite system dynamics, geographical location of a ground terminal and statistic information of call duration. The performance of the proposed routing scheme has been evaluated and compared with previous routing schemes in terms of average number of link handovers during a call, the call blocking and dropping probability, and the network utilization.

  • PDF