• 제목/요약/키워드: calibration factors

검색결과 372건 처리시간 0.038초

가속도계 정밀 위상 교정 시스템 (Precision Phase Calibration System of Accelerometers)

  • 이용봉;정성수;진종한
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.585-590
    • /
    • 2011
  • Accelerometers have been exploited widely in various fields from monitoring vibration of precision machines to detecting an earthquake wave. The precision calibration of the accelerometers is required to maintain the measurement reliability when measuring the vibration of objects with accelerometers for modal analysis. Among evaluation factors for determining sensitivity of accelerometers, phase delay term should be also considered for accurate calibration. In this paper, a new calibration system of accelerometers capable of measuring phase delay as well as magnitude of its sensitivity was proposed and realized in the frequency range of 20 Hz to 5 kHz.

Identification of risk factors and development of the nomogram for delirium

  • Shin, Min-Seok;Jang, Ji-Eun;Lee, Jea-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.339-350
    • /
    • 2021
  • In medical research, the risk factors associated with human diseases need to be identified to predict the incidence rate and determine the treatment plan. Logistic regression analysis is primarily used in order to select risk factors. However, individuals who are unfamiliar with statistics outcomes have trouble using these methods. In this study, we develop a nomogram that graphically represents the numerical association between the disease and risk factors in order to identify the risk factors for delirium and to interpret and use the results more effectively. By using the logistic regression model, we identify risk factors related to delirium, construct a nomogram and predict incidence rates. Additionally, we verify the developed nomogram using a receiver operation characteristics (ROC) curve and calibration plot. Nursing home, stroke/epilepsy, metabolic abnormality, hemodynamic instability, and analgesics were selected as risk factors. The validation results of the nomogram, built with the factors of training set and the test set of the AUC showed a statistically significant determination of 0.893 and 0.717, respectively. As a result of drawing the calibration plot, the coefficient of determination was 0.820. By using the nomogram developed in this paper, health professionals can easily predict the incidence rate of delirium for individual patients. Based on this information, the nomogram could be used as a useful tool to establish an individual's treatment plan.

액체용 유량계교정시스템의 교정측정능력 평가 (CMC Evaluation of Flowmeter Calibration System for Liquid)

  • 이동근;김종섭;박태진;박종호
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.5-10
    • /
    • 2014
  • It is possible for the nation's largest flowmeter calibration system in K-water to calibrate flow rate up to $2,700m^3/h$ and diameter 800mm. However, the calibration and measurement capability of K-water's system is not satisfied in comparison with other developed countries. In this study, we find the dominant factors related to the uncertainty of weight and time measurement for gravimetric flowmeter calibration system. As a results of improving the system, the combined standard uncertainty has been improved $1.099{\times}10^{-3}$ to $2.332{\times}10^{-4}$. So calibration and measurement capability got 0.08 percent of the relative expanded uncertainty for maximum flow rate using the coverage factor(k=2).

RADIOMETRIC CHARACTERISTICS OF KOMPSAT-2 HIGH RESOLUTION IMAGES

  • Chi, Jun-Hwa;Yoon, Jong-Suk;Lee, Kyu-Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.390-393
    • /
    • 2007
  • KOMPSAT-2, the first Korean high resolution earth observing satellite, continuously acquires high resolution images since July 2006. The quality of satellite images should be geometrically and radiometrically ensured before distribution to users. This study focused on absolute radiometric calibration which is a prerequisite procedure to ensure the radiometric quality of optical satellite images. In this study, we performed reflectance-based vicarious calibration methods on several uniform targets collected through several field campaigns in 2007. The radiative transfer model, MODTRAN, was used to estimate the amount of energy received at the sensor. The energy reached at the sensor are affected by several factors such as reflectance of targets, atmospheric condition, geometry condition between Sun and the sensor, etc. This study proposes the absolute radiometric calibration coefficients of KOMPSAT-2 MSC images combining several types of collected data through field works and tried to compare dynamic range of sensor-detected energy with other commercial high resolution sensors.

  • PDF

초음파 핑거를 이용한 수파기 좌표의 보정 (Calibration of hydrophone Coordinates by the Telemetry techniques)

  • 신현옥
    • 수산해양기술연구
    • /
    • 제28권3호
    • /
    • pp.252-261
    • /
    • 1992
  • The accuracy of the position fixing with telemetry techniques depends in general on the accuracy of the location of the receiving point(hydrophone). To increase the accuracy of the coordinates of four hydrophones suspended down at both sides of the vessel anchored, each hydrophone motion is compensated using a depth pinger mounted on the seabed of 30m depth. The pinger location is calculated with a hyperbolic method. Using this technique so called hydrophone coordinates calibration, the movement of the Remotely Operated Vehicle(ROV), which has the same type of pinger mentioned above could be tracked down more accurately. Under the maximum variation ranges of a hydrophone of 5.2m in athwartships, 3.2m in alongship, and about 0.2m/s of the moving velocity in both directions, the ROV track with calibration is more close to the reality than that without calibration Tow depth pingers of same frequency can be distinguished by the use of three factors; The pulse period, the phase and the pulse period variation allowed in acquisition of the pinger as far as its pulse period is varied in smooth.

  • PDF

적외선 열화상 카메라용 캘리브레이션 타겟 개발 (Development of Calibration Target for Infrared Thermal Imaging Camera)

  • 김수언;최만용;박정학;신광용;이의철
    • 비파괴검사학회지
    • /
    • 제34권3호
    • /
    • pp.248-253
    • /
    • 2014
  • 카메라 영상 캘리브레이션은 머신비전과 같은 비전검사기술분야에서 영상으로부터 기하학적 정보를 정확하게 추출하고자 할 때 정확성을 높이는데 필요한 매우 중요한 과정이다. 그러나 기존에 가시광 카메라에 사용되던 캘리브레이션 타겟은 중적외선, 원적외선 열화상 카메라에 적용하기 어렵다. 최근에 적외선 열화상카메라를 이용한 결함측정기술이 많이 사용되면서 적용할 수 있는 캘리브레이션 타겟 개발이 요구되고 있다. 따라서 본고에서는 유한요소 열전달 해석을 이용하여 가시광 카메라와 적외선 열화상카메라 모두에 적용 가능한 캘리브레이션 타겟을 제안하였다. 개발된 캘리브레이션 타겟을 열화상카메라와 가시광 카메라로 촬영하여 비교실험 하였으며, 실험결과 제안된 캘리브레이션 타겟의 효율성을 보여준다.

가스 센서모듈 및 센서보정시스템 개발 (Development of Gas Sensor Modules and Sensor Calibration Systems)

  • 박철영;임병훈;류정탁
    • 한국산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.83-90
    • /
    • 2010
  • 센서는 센서네트워크와 같은 다양한 센서시스템에 응용되고 있는 핵심부품이다. 그러나 센서는 온도에 따른 출력특성과 비선형성을 가지기 때문에 개발이 쉽지 않다. 이러한 문제점을 해결하기 위해서는 센서의 보정과정이 필요 하지만 현재의 센서보정과정에서는 많은 보정시간과 비용을 요구하고 있다. 그러므로 보정시간과 비용을 최소화할 수 있는 보정시스템개발이 필요하다. 본 논문에서 CO 및 $CO_2$ 센서모듈 개발과 현재의 보정방법에서의 문제점들을 해결할 수 있는 다수센서보정시스템을 제안한다. 제안하는 시스템은 센서모듈, 시스템보드 및 모니터링프로그램 등으로 구성되며 보정은 최소자승법을 기반 한 회귀분석 방법을 사용한다. 제안한 보정시스템의 구성 및 실험결과에 대해 소개하고 결과를 바탕으로 시스템의 유효성을 검증한다.

비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발 (Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues)

  • 최우철;전태훈;송정호;김광표
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.

MDCT 선량측정에서 온도와 압력에 따른 보정과 Ionization Chamber의 Calibration 전후 선량의 비교평가 (Comparison of Radiation Dose in the Measurement of MDCT Radiation Dose according to Correction of Temperatures and Pressure, and Calibration of Ionization Chamber)

  • 이창래;김희중;전성수;조효민;남소라;정지영;이영진;이승재;동경래
    • 한국의학물리학회지:의학물리
    • /
    • 제19권1호
    • /
    • pp.49-55
    • /
    • 2008
  • 본 연구는 MDCT에서 선량을 측정하는데 사용되는 ionization chamber의 calibration 전과 후의 calibration factor에 따른 선량과 촬영실의 온도, 기압의 보정(correction factor) 적용 유무에 따른 $CTDI_w$를 비교 분석하는데 있다. 2007년 3월 21일에 교정된 Model 2026C electormeter (RADICAL 2026C, USA)를 이용한 MDCT (GE light speed plus 4 slice, USA)와 head and body CT dosimetry phantom을 사용하여 측정된 값을 비교 분석하였다. 결과는 calibration factor와 주변 온도, 압력의 correction factor를 보정 해 준 $CTDI_w$ 값이 보정을 하지 않고 계산된 값보다 $0.479{\sim}3.162mGy$의 범위만큼 더 많은 선량 값이 계산되었고 실제 병원에서 사용하는 복부 일반 CT (abdomen routine CT) 조건에서의 환자선량을 측정한 결과 factor적용 전과 후의 유효선량 차는 최고 0.7 mSv의 차이가 남을 확인 할 수 있었다. 이러한 결과는 ionization chamber의 calibration과 촬영실 주변 온도와 압력이 환자선량의 측정과 계산에 중요한 요소임을 알 수 있다. 따라서 정확한 환자 선량 측정을 위해서는 촬영실 주변 온도와 압력뿐만 아니라 습도 및 recombination factor, x-ray beam quality 특성, 촬영조건(exposure conditions), 측정부위(scan region) 등에 대한 보정 factor들의 정확한 정보를 알아야 한다.

  • PDF

A REVIEW OF NEUTRON SCATTERING CORRECTION FOR THE CALIBRATION OF NEUTRON SURVEY METERS USING THE SHADOW CONE METHOD

  • KIM, SANG IN;KIM, BONG HWAN;KIM, JANG LYUL;LEE, JUNG IL
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.939-944
    • /
    • 2015
  • The calibration methods of neutron-measuring devices such as the neutron survey meter have advantages and disadvantages. To compare the calibration factors obtained by the shadow cone method and semi-empirical method, 10 neutron survey meters of five different types were used in this study. This experiment was performed at the Korea Atomic Energy Research Institute (KAERI; Daejeon, South Korea), and the calibration neutron fields were constructed using a $^{252}Californium$ ($^{252}Cf$) neutron source, which was positioned in the center of the neutron irradiation room. The neutron spectra of the calibration neutron fields were measured by a europium-activated lithium iodide scintillator in combination with KAERI's Bonner sphere system. When the shadow cone method was used, 10 single moderator-based survey meters exhibited a smaller calibration factor by as much as 3.1-9.3% than that of the semi-empirical method. This finding indicates that neutron survey meters underestimated the scattered neutrons and attenuated neutrons (i.e., the total scatter corrections). This underestimation of the calibration factor was attributed to the fact that single moderator-based survey meters have an under-ambient dose equivalent response in the thermal or thermal-dominant neutron field. As a result, when the shadow cone method is used for a single moderator-based survey meter, an additional correction and the International Organization for Standardization standard 8529-2 for room-scattered neutrons should be considered.