• Title/Summary/Keyword: calibration equation

Search Result 311, Processing Time 0.033 seconds

Determination of Degree of Retrogradation of Cooked Rice by Near-Infrared Reflectance Spectroscopy (근적외 분광분석법에 의한 밥의 노화도측정)

  • Cho, Seung-Yong;Choi, Sung-Gil;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.579-584
    • /
    • 1994
  • Near infrared reflectance(NIR) spectroscopy was used to determine the degree of retrogradation of cooked rice. Cooked rice samples were stored at $4^{\circ}C$ for 120 hours, and the degree of retrogradation was measured at every 6 hour during the storage time. Stored cooked rices were freeze-dried, milled and passed through a 100 mesh sieve. Enzymatic method using glucoamylase was used as reference method for the determination of the degree of retrogradation. Spectral differences due to retrogradation of cooked rice were observed at 1434, 1700, 1928, 2100, 2284 and 2320 nm. 32 samples of which moisture content were below 5% were used for calibration set, and 16 samples were used for validation set. High correlations were achieved between degree of retrogradation determined by conventional enzymatic method and by NIR with multiple correlation coefficient of 0.9753, and a standard error of calibration(SEC) of 3.64%. Comparable results were obtained with 3.91% of standard error of prediction(SEP), when the calibration equation was applied to independent group of samples of which moisture contents were in the range of calibration set. But when the calibration equation was applied to samples of which moisture contents were outer range of calibration set, SEP and bias were increased and correlation coefficient was decreased. The determination of degree of retrogradation was affected by sample moisture content. To determine degree of retrogradation of cooked rice by NIR using this calibration equation, it was suggested that sample moisture content should be controlled to below 5%.

  • PDF

Relationship between Near Infrared Reflectance Spectra and Mechanical Sensory Score of Commercial Brand Rice Produced in Jeonbuk (전북산 브랜드 쌀의 근적외선 분광스펙트럼과 기계적 식미치간의 상호관계)

  • Song, Young-Ju;Song, Young-Eun;Oh, Nam-Ki;Choi, Yeong-Geun;Cho, Kyu-Cha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.42-46
    • /
    • 2006
  • The purpose of this study was to assess whether mechanical sensory score by Toyo Midometer can be substituted by near-infrared spectroscopy (NIRS) method in whole-grain milled rice samples. Toyo values of collected commercial brand rice (n=127) had comparatively wide ranges from 62.9 to 84.2 (Mean=70.5; S.D.=4.0). Calibration equation was developed using 73 samples. Standard error of calibration (SEC) for sensory score equation and $R^2$ were 0.95, and 0.94, respectively, however, percentage of variation in the reference method values (1-VR) which give a true indication of equation performance was slightly lower (1-VR=0.81) than calibration equation. It was demonstrated that, even though NIRS has potential as a rapid tools to predict rice sensory score, the prediction of sensory score in rice by NIRS needs to be further investigation on a large number of sample with different varieties and growing locations.

A Study on Comparison between the Propagation of Uncertainty by GUM and Monte-Carlo Simulation (측정 불확도 표현 지침서(GUM)와 Monte-Carlo Simulation에 의한 불확도 전파 결과의 비교 연구)

  • Jungkee Shu;Hyungsik Min;Minsu Park;Jin-Chun Woo;Jongsang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • The expanded uncertainties calculated by the application of GUM -approximation and Monte-Carlo simulation were compared about the model equation of one-point calibration which is widely used for the measurements and chemical analysis. For the comparisons, we assumed a set of artificial data at the various level of concentration and dispersion of t or normal distribution. Mistakes of more then 50 % was revealed at the values calculated by GUM-approximation in comparison with those of Monte-Carlo simulation because of the excess dispersion from t-distribution and non-linearity by division in the equation. In contrary, the mistake of calculation due to non-linearity of the equation was not observed in the level of detection limits with the equation of one-point calibration, because of the relatively large values of uncertainty in response.

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

Development of 3-D Volume PIV (3차원 Volume PIV의 개발)

  • Choi, Jang-Woon;Nam, Koo-Man;Lee, Young-Ho;Kim, Mi-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.726-735
    • /
    • 2003
  • A Process of 3-D Particle image velocimetry, called here, as '3-D volume PIV' was developed for the full-field measurement of 3-D complex flows. The present method includes the coordinate transformation from image to camera, calibration of camera by a calibrator based on the collinear equation, stereo matching of particles by the approximation of the epipolar lines, accurate calculation of 3-D particle positions, identification of velocity vectors by 3-D cross-correlation equation, removal of error vectors by a statistical method followed by a continuity equation criterior, and finally 3-D animation as the post processing. In principle, as two frame images only are necessary for the single instantaneous analysis 3-D flow field, more effective vectors are obtainable contrary to the previous multi-frame vector algorithm. An Experimental system was also used for the application of the proposed method. Three analog CCD camera and a Halogen lamp illumination were adopted to capture the wake flow behind a bluff obstacle. Among 200 effective particle s in two consecutive frames, 170 vectors were obtained averagely in the present study.

A Study on Calibrations of health monitoring system installed in Railway bridge (철도교 상시계측시스템의 센서교정방안 연구)

  • Lee Hyun Suk;Lee Jun Suk;Choi Il Yoon;Yim Myoung Jae
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.483-488
    • /
    • 2003
  • Calibration and gauge factor readjustment process made for the health monitoring system installed in the railway bridges is reviewed and some findings are explained in this study: specifically, the calibrators made for this purpose are illustrated and the regression processes of the calibration on long-term displacement using water level sensor, longitudinal displacement using LVDT sensor, instantaneous displacement using LVDT sensors and accelerometer are described in details. Based on the regression results, new gauge factors are obtained from regression equation and another verification is made by performing another calibration again with new factors. From the second calibration, it was found that the suggested regression curves and their factors are appropriate and much better results are expected. Future work will be concentrated on the long-term analysis of the measurement data and on the database structures so that the assessment of the structure such as damage detection and remaining life estimation is possible.

  • PDF

Self-Calibration of a Robot Manipulator by Using the Moving Pattern of an Object (물체의 운동패턴을 이용한 로보트 팔의 자기보정)

  • Young Chul Kay
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.777-787
    • /
    • 1995
  • This paper presents a new method for automatically calibrating robot link (Kinematic) parameters during the process of estimating motion parameters of a moving object. The motion estimation is performed based on stereo cameras mounted on the end-effector of a robot manipulator. This approach significantly differs from other calibration approaches in that the calibration is achieved by simply observing the motion of the moving object (without resorting to any other external calibrating tools) at numerous and widely varying joint-angle configurations. A differential error model, which expresses the measurement errors of a robot in terms of robot link parameter errors and motion parameters, is developed. And then a measurement equation representing the true measurement values is derived. By estimating the above two kinds of parameters minimizing the difference between the measurement equations and the true moving pattern, the calibration of the robot link parameters and the estimation of the motion parameters are accomplished at the same time.

  • PDF

An Exact 3D Data Extraction Algorithm For Active Range Sensor using Laser Slit (레이저 슬릿을 사용하는 능동거리 센서의 정확한 3D 데이터 추출 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.73-85
    • /
    • 1995
  • The sensor system to measure the distance precisely from the center of the sensor system to the obstacle is needed to recognize the surrounding environments, and the sensor system is to be calibrated thoroughly to get the range information exactly. This study covers the calibration of the active range sensor which consists of camera and laser slit emitting device, and provides the equations to get the 3D range data. This can be possible by obtaining the extrinsic parameters of laser slit emitting device through image processing the slits measured during the constant distance intervals and the intrinsic parameters from the calibration of camera. The 3D range data equation derived from the simple geometric assumptions is proved to be applicable to the general cases using the calibration parameters. Also the exact 3D range data were obtained to the object from the real experiment.

  • PDF

SELECTION OF WAELENGTH REGION FOR PLS BRIX CALIBRATION OF MANGO BY MLR METHOD

  • Sarawong, Sirinnapa;Sornsrivichai, Jinda;Kawano, Sumio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1625-1625
    • /
    • 2001
  • The calibration equations for Brix value determination of intact mango were developed using the NIR spectra in a short wavelength region from 700 to 1100 nm. Multiple linear regression (MLR) and partial least square regression (PLS) was used for the calibration. It was found that the best wavelength region for PLS calibration from 900 to 1000 nm was similar to the wavelength region selected by MLR from 906 nm to 996 nm. Both MLR and selected region PLS provided sufficiently accurate prediction equations for Brix determination of intact mango. For MLR, the prediction results were SEP = 0.45 Brix and Bias = -0.04 Brix while PLS prediction results were SEP : 0.46 Brix and Bias = -0.2 Brix. It was concluded that MLR and PLS would have similar abilities in making calibration equation for Brix determination of intact mango if the appropriate wavelengths or wavelength region were selected. The appropriate wavelength region for PLS regression could be assumed by using the wavelength region selected by MLR in place of random selection, The relationship between calibration results of MLR and PLS regression is discussed.

  • PDF

Determination of Total Volatile Bases of Tobacco Using Near Infrared Spectroscopy (근외적 분광분석법을 이용한 담배 중 전휘발성염기 분석)

  • Kim Yong-Ok;Jang Gi-Chul;Lee Chul-Hee;Chung Han-Joo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.207-211
    • /
    • 2005
  • This study was carried out to develop calibration equation of total volatile bases of tobacco leaf using near infrared spectroscopy(NIRS). Burley, imported flue-cured and oriental leaf tobacco samples were collected in 2005 crop year. Calibration equation was developed by modified partial least square method. The standard error of calibration and $R^2$ between traditional analytical method and NIRS analytical method were $0.038\%$, 0.983 for burley and $0.027\%$, 0.986 for imported flue-cured and oriental leaf, respectively. The standard error of performance and $R^2$ between traditional analytical method and NIRS analytical method were $0.048\%$, 0.940 for burley and $0.024\%$, 0.986 for imported flue-cured and oriental leaf, respectively. From these results, the NIRS analytical method seems to be applicable in analyzing total volatile bases of tobacco.