• Title/Summary/Keyword: calibration

Search Result 6,308, Processing Time 0.037 seconds

Plankton Community Response to Physico-Chemical Forcing in the Ulleung Basin, East Sea during Summer 2008 (2008년 하계 울릉분지에서 관측된 물리·화학적 외압에 대한 플랑크톤 군집의 반응)

  • Rho, Tae-Keun;Kim, Yun-Bae;Park, Jeong-In;Lee, Yong-Woo;Im, Dong-Hoon;Kang, Dong-Jin;Lee, Tong-Sup;Yoon, Seung-Tae;Kim, Tae-Hoon;Kwak, Jung-Hyun;Park, Hyun-Je;Jeong, Man-Ki;Chang, Kyung-Il;Kang, Chang-Keun;Suh, Hae-Lip;Park, Myung-Won
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.269-289
    • /
    • 2010
  • In Summer 2008, a multidisciplinary survey was conducted onboard R/V Haeyang 2000 to understand plankton response to the three distinct physico-chemical settings that developed in the Ulleung Basin of the East Sea. Baseline settings of hydrographic conditions included the presence of the thin (<20 m) Tsushima Surface Water (TSW) on top of the Tsushima Middle Water (TMW). It extends from the Korea Strait to $37^{\circ}N$ along the $130^{\circ}E$ and then turns offshore and encompasses the relatively saline (T>$26^{\circ}C$, S>33.7) Ulleung Warm Eddy surface water centered at $36.5^{\circ}N$ and $131^{\circ}E$. A relatively colder and saline water mass appeared off the southeastern coast of Korea. It was accompanied by higher nutrient and chlorophyll-a concentrations, suggesting a coastal upwelling. Most of the offshore surface waters support low phytoplankton biomass (0.3 mg chl-a $m^{-3}$). A much denser phytoplankton biomass (1-2.3 mg $m^{-3}$) accumulated at the subsurface layer between 20-50 m depth. The subsurface chlorophyll-a maximum (SCM) layer was closely related to the nutricline, suggesting an active growth of phytoplankton at depth. The SCM developed at shallow depth (20-30 m) near the coast and deepened offshore (50-60 m). A fucoxanthin/zeaxanthin ratio was high in coastal waters while it was low in offshore waters, which indicated that diatoms dominate coastal waters while cyanobacteria dominate offshore waters. The community structure and biomass of phytoplanktonare closely related to nitrogen availability. Zooplankton biomass was higher in the coastal region than in the offshore region while species richness showed an opposite trend. Zooplankton community structure retained a coastal/offshore contrast. These suggest that summer hydrography is a stable structure, lasting long enough to allow a hydrography-specific plankton community to evolve.

A Comparison Study of Aerosol Samplers for PM10 Mass Concentration Measurement (PM10 질량농도 측정을 위한 시료채취기의 비교 연구)

  • Park, Ju-Myon;Koo, Ja-Kon;Jeong, Tae-Young;Kwon, Dong-Myung;Yoo, Jong-Ik;Seo, Yong-Chil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • A PM10 (aerodynamic diameter${\leq}$10 ${\mu}m$) sampler is used to quantify the potential human exposure to suspended particulate matter (PM) and to comply with the governmental regulation. This study was conducted to compare and evaluate the same PM10 cutpoint and different slopes between United States Environmental Protection Agency (USEPA) PM10 sampling criterion and American Conference of Governmental Industrial Hygienists/$Comit\acute{e}$ $Europ\acute{e}en$ de Normalization/International Organization for Standardization thoracic PM10 sampling criterion through theory and experiment. Four PM10 samplers according to the USEPA criterion and one RespiCon sampler in accordance with the thoracic PM10 criterion were used in the present study. In addition, one DustTrak monitor was used to measure real time PM10 mass concentrations. All six aerosol samplers were tested in a PM generation chamber using polydisperse fly ash. Theoretical mass concentrations were calculated by applying the measured particle size distribution characteristics (geometric mean = 6.6 ${\mu}m$, geometric standard deviation = 1.9) of fly ash to each sampling criterion. The measured mass concentrations through a chamber experiment were consistent with theoretical mass concentrations in that a RespiCon sampler with the thoracic PM10 criterion collected less PM than a PM10 sampler with the USEPA criterion. The overall chamber experiment results indicated, when a PM10 sampler was used as a reference sampler, that (1) a RespiCon sampler had a normalizing factor of 1.6, meaning that this sampler underestimated an average 60% of PM10 mass sampled from a PM10 sampler, and (2) a DustTrak real-time monitor using a PM10 inlet had a calibration factor of 2.1.

Quantifying Uncertainty of Calcium Determination in Infant Formula by AAS and ICP-AES (AAS 및 ICP-AES에 의한 조제분유 중 칼슘 함량 분석의 측정불확도 산정)

  • Jun, Jang-Young;Kwak, Byung-Man;Ahn, Jang-Hyuk;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.701-710
    • /
    • 2004
  • Uncertainty was quantified to evaluate calcium determination result in infant formula with AAS (Atomic Absorption Spectrometry) and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Uncertainty sources in measurand, such as sample weight, final volume of sample, sample dilution and the instrumental result were identified and used as parameters for combined standard uncertainty based on the GUM (Guide to the expression of uncertainty in measurement) and Draft EURACHEM/CITAC Guide. Uncertainty components of each sources in measurand were identified as resolution, reproducibility and stability of chemical balance, standard material purity, standard material molecular weight, standard solution concentration, standard solution dilution factor, sample dilution factor, calibration curve, recovery, instrumental precision, reproducibility, and stability, Each uncertainty components were evaluated by uncertainty types and included to calculate combined uncertainty. The kinds of uncertainty sources and components in the analytical method by AAS and ICP-AES were same except sample dilution factor for AAS. The analytical results and combined standard uncertainties of calcium content were estimated within the certification range $(367{\pm}20\;mg/100g)$ of CRM (Certified Reference Material) and were not significantly different between method by AAS followed by ashing and method by ICP-AES followed by acid digestion as $359.52{\pm}23.61\;mg/100g\;and\;354.75{\pm}16.16\;mg/100g$, respectively. Identifying uncertainty sources related with precision, repeatability, stability, and maintaining proper instrumental conditions as well as personal proficiency was needed to reduce analytical error.

Video Camera Characterization with White Balance (기준 백색 선택에 따른 비디오 카메라의 전달 특성)

  • 김은수;박종선;장수욱;한찬호;송규익
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.23-34
    • /
    • 2004
  • Video camera can be a useful tool to capture images for use in colorimeter. However the RGB signals generated by different video camera are not equal for the same scene. The video camera for use in colorimeter is characterized based on the CIE standard colorimetric observer. One method of deriving a colorimetric characterization matrix between camera RGB output signals and CIE XYZ tristimulus values is least squares polynomial modeling. However it needs tedious experiments to obtain camera transfer matrix under various white balance point for the same camera. In this paper, a new method to obtain camera transfer matrix under different white balance by using 3${\times}$3 camera transfer matrix under a certain white balance point is proposed. According to the proposed method camera transfer matrix under any other white balance could be obtained by using colorimetric coordinates of phosphor derived from 3${\times}$3 linear transfer matrix under the certain white balance point. In experimental results, it is demonstrated that proposed method allow 3${\times}$3 linear transfer matrix under any other white balance having a reasonable degree of accuracy compared with the transfer matrix obtained by experiments.

Development and Validation of Analytical Method for Determination of Biphenyl Analysis in Foods (식품 중 비페닐 분석법 개발 및 유효성 검증)

  • Kim, Jung-Bok;Kim, Myung-Chul;Song, Sung-Woan;Shin, Jae-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.459-464
    • /
    • 2017
  • Biphenyl is used as an intermediate in the production of crop protection products, a solvent in pharmaceutical production, and as a component in the preservation of citrus fruits in many countries. Biphenyl is not authorized for use and also does not have standards or specifications as a food additive in Korea. National and imported food products are likely to contain biphenyl. Therefore, control and management of these products is required. In this study, a simple analytical method was developed and validated using HPLC to determine biphenyl in food. These methods are validated by assessing certain performance parameters: linearity, accuracy, precision, recovery, limit of detection (LOD), and limit of quantitation (LOQ). The calibration curve was obtained from 1.0 to $100.0{\mu}g/mL$ with satisfactory relative standard deviations (RSD) of 0.999 in the representative sample (orange). In the measurement of quality control (QC) samples, accuracy was in the range of 95.8~104.0% within normal values. The inter-day and inter-day precision values were less than 2.4% RSD in the measurement of QC samples. Recoveries of biphenyl from spiked orange samples ranged from 92.7 to 99.4% with RSD between 0.7 and 1.7% at levels of 10, 50, and $100{\mu}g/mL$. The LOD and LOQ were determined to be 0.04 and $0.13{\mu}g/mL$, respectively. These results show that the developed method is appropriate for biphenyl identification and can be used to examine the safety of citrus fruits and surface treatments containing biphenyl residues.

Method Validation for Determination of Lignan Content in Fermented Sesame by Bioconversion (생물전환된 참깨 발효물의 Lignan 화합물의 분석법 검증)

  • Jung, Tae-Dong;Kim, Jae-Min;Choi, Sun-Il;Choi, Seung-Hyun;Cho, Bong-Yeon;Lee, Jin-Ha;Lee, Sang Jong;Park, Seon Ju;Heo, In Young;Lee, Ok-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.5
    • /
    • pp.646-652
    • /
    • 2017
  • The aim of this study was to investigate method validation for determination of sesamol, sesamin, and sesamolin in non-fermented sesame and fermented sesame by bioconversion. For validation, the specificity, linearity, precision, accuracy, limits of detection (LOD), and quantification (LOQ) of sesamol, sesamin, and sesamolin were measured by HPLC. Linearity tests showed that the coefficients of calibration correlation ($R^2$) for sesamol, sesamin, and sesamolin were 0.9999. Recovery rates of lignan contents in non-fermented and fermented sesame were high in the ranges of 100.27~115.10% and 98.43~114.90%, respectively. The inter-day and intra-day precisions of sesamin and sesamolin analyses for non-fermented and fermented sesame were 0.27~1.94% and 0.25~0.69%, respectively. The LOD and LOQ were $0.23{\sim}0.34{\mu}g/g$ and $0.70{\sim}1.03{\mu}g/g$, respectively. These results indicate that the validated method is appropriate for the determination of sesamol, sesamin, and sesamolin.

Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People's Democratic Republic (기후변화에 따른 라오스인민공화국의 시방파이 유역의 수문현상 예측에 대한 연구: SWAT 모델을 이용하여)

  • Phomsouvanh, Virasith;Phetpaseuth, Vannaphone;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.6
    • /
    • pp.779-797
    • /
    • 2016
  • A calibrated hydrological model is a useful tool for quantifying the impacts of the climate variations and land use/land cover changes on sediment load, water quality and runoff. In the rainy season each year, the Xe Bang Fai river basin is provisionally flooded because of typhoons, the frequency and intensity of which are sensitive to ongoing climate change. Severe heavy rainfall has continuously occurred in this basin area, often causing severe floods at downstream of the Xe Bang Fai river basin. The main purpose of this study is to investigate the climate change impact on river discharge using a Soil and Water Assessment Tool (SWAT) model based on future climate change scenarios. In this study, the simulation of hydrological river discharge is used by SWAT model, covering a total area of $10,064km^2$ in the central part of country. The hydrological model (baseline) is calibrated and validated for two periods: 2001-2005 and 2006-2010, respectively. The monthly simulation outcomes during the calibration and validation model are good results with $R^2$ > 0.9 and ENS > 0.9. Because of ongoing climate change, three climate models (IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030) indicate that the rainfall in this area is likely to increase up to 10% during the summer monsoon season in the near future, year 2030. As a result of these precipitation increases, the SWAT model predicts rainy season (Jul-Aug-Sep) river discharge at the Xebangfai@bridge station will be about $800m^3/s$ larger than the present. This calibrated model is expected to contribute for preventing flood disaster risk and sustainable development of Laos

  • PDF

Development of a deep-learning based tunnel incident detection system on CCTVs (딥러닝 기반 터널 영상유고감지 시스템 개발 연구)

  • Shin, Hyu-Soung;Lee, Kyu-Beom;Yim, Min-Jin;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.915-936
    • /
    • 2017
  • In this study, current status of Korean hazard mitigation guideline for tunnel operation is summarized. It shows that requirement for CCTV installation has been gradually stricted and needs for tunnel incident detection system in conjunction with the CCTV in tunnels have been highly increased. Despite of this, it is noticed that mathematical algorithm based incident detection system, which are commonly applied in current tunnel operation, show very low detectable rates by less than 50%. The putative major reasons seem to be (1) very weak intensity of illumination (2) dust in tunnel (3) low installation height of CCTV to about 3.5 m, etc. Therefore, an attempt in this study is made to develop an deep-learning based tunnel incident detection system, which is relatively insensitive to very poor visibility conditions. Its theoretical background is given and validating investigation are undertaken focused on the moving vehicles and person out of vehicle in tunnel, which are the official major objects to be detected. Two scenarios are set up: (1) training and prediction in the same tunnel (2) training in a tunnel and prediction in the other tunnel. From the both cases, targeted object detection in prediction mode are achieved to detectable rate to higher than 80% in case of similar time period between training and prediction but it shows a bit low detectable rate to 40% when the prediction times are far from the training time without further training taking place. However, it is believed that the AI based system would be enhanced in its predictability automatically as further training are followed with accumulated CCTV BigData without any revision or calibration of the incident detection system.

Application of Off-axis Correction Method for EPID Based IMRT QA (EPID를 사용한 세기조절방사선치료의 정도관리에 있어 축이탈 보정(Off-axis Correction)의 적용)

  • Cho, Ilsung;Kwark, Jungwon;Park, Sung Ho;Ahn, Seung Do;Jeong, Dong Hyeok;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.317-325
    • /
    • 2012
  • The Varian PORTALVISION (Varian Medical Systems, US) shows significant overresponses as the off-center distance increases compared to the predicted dose. In order to correct the dose discrepancy, the off-axis correction is applied to VARIAN iX linear accelerators. The portal dose for $38{\times}28cm^2$ open field is acquired for 6 MV, 15 MV photon beams and also are predicted by PDIP algorithm under the same condition of the portal dose acquisition. The off-axis correction is applied by modifying the $40{\times}40cm^2$ diagonal beam profile data which is used for the beam profile calibration. The ratios between predicted dose and measured dose is modeled as a function of off-axis distance with the $4^{th}$ polynomial and is applied to the $40{\times}40cm^2$ diagonal beam profile data as the weight to correct measured dose by EPID detector. The discrepancy between measured dose and predicted dose is reduced from $4.17{\pm}2.76$ CU to $0.18{\pm}0.8$ CU for 6 MV photon beam and from $3.23{\pm}2.59$ CU to $0.04{\pm}0.85$ CU for 15 MV photon beam. The passing rate of gamma analysis for the pyramid fluence patten with the 4%, 4 mm criteria is improved from 98.7% to 99.1% for 6 MV photon beam, from 99.8% to 99.9% for 15 MV photon beam. IMRT QA is also performed for randomly selected Head and Neck and Prostate IMRT plans after applying the off-axis correction. The gamma passing rare is improved by 3% on average, for Head and Neck cases: $94.7{\pm}3.2%$ to $98.2{\pm}1.4%$, for Prostate cases: $95.5{\pm}2.6%$, $98.4{\pm}1.8%$. The gamma analysis criteria is 3%, 3 mm with 10% threshold. It is considered that the off-axis correction might be an effective and easily adaptable means for correcting the discrepancy between measured dose and predicted dose for IMRT QA using EPID in clinic.

Temporal and Spatial Characteristics of Sediment Yields from the Chungju Dam Upstream Watershed (충주댐 상류유역의 유사 발생에 대한 시공간적인 특성)

  • Kim, Chul-Gyum;Lee, Jeong-Eun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.887-898
    • /
    • 2007
  • A physically based semi-distributed model, SWAT was applied to the Chungju Dam upstream watershed in order to investigate the spatial and temporal characteristics of watershed sediment yields. For this, general features of the SWAT and sediment simulation algorithm within the model were described briefly, and watershed sediment modeling system was constructed after calibration and validation of parameters related to the runoff and sediment. With this modeling system, temporal and spatial variation of soil loss and sediment yields according to watershed scales, land uses, and reaches was analyzed. Sediment yield rates with drainage areas resulted in $0.5{\sim}0.6ton/ha/yr$ excluding some upstream sub-watersheds and showed around 0.51 ton/ha/yr above the areas of $1,000km^2$. Annual average soil loss according to land use represented the higher values in upland areas, but relatively lower in paddy and forest areas which were similar to the previous results from other researchers. Among the upstream reaches, Pyeongchanggang and Jucheongang showed higher sediment yields which was thought to be caused by larger area and higher fraction of upland than other upstream sub-areas. Monthly sediment yields at the main outlet showed same trend with seasonal rainfall distribution, that is, approximately 62% of annual yield was generated during July to August and the amount was about 208 ton/yr. From the results, we could obtain the uniform value of sediment yield rate and could roughly evaluate the effect of soil loss with land uses, and also could analyze the temporal and spatial characteristics of sediment yields from each reach and monthly variation for the Chungju Dam upstream watershed.