• Title/Summary/Keyword: calcium leaching

Search Result 78, Processing Time 0.023 seconds

Effect of Potassium Application on Cation Uptake by Rice Plant and Leachate in Submerged Soil (답토양(畓土壤)에서 가리시용(加里施用)이 벼의 주요양(主要陽)이온 흡수(吸收)와 용탈(溶脫)에 미치는 영향(影響))

  • Jung, Kwang-Young;Cho, Seong-Jin;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.235-241
    • /
    • 1983
  • Major cation uptake by the rice plant and its leachates in submerged condition were studied at 3 different levels of potassium and nitrogen application with three texture soils (Clay loam, Loam, Sandy loam) by pot experiment. The results are as follows. 1. Potassium uptake and grain yields of rice plant were increased and calcium and magnesium uptake of rice plant were decreased by application of potassium. 2. The potassium application caused to increase Ca, Mg, K and $NH_4$ Content in leachate. 3. In the rice leaf at heading stage, the optimum cation ratios of K/Ca, K/Mg in me and $K_2O/N$ in % at N 3.3g/pot level were 1.59, 4.26 and 3.62, respectively, but the ratios were increased to 1.65, 4.32 and 3.94 at high level of nitrogen. 4. Similar trends of cation ratios were found in rice straw. leaching soil solution and soils after harvest by potassium application.

  • PDF

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Effects of Lime, Magnesium Sulfate, and Compound Fertilizers on Soil Chemical Properties of Acidified Forest Soils (산성화(酸性化)된 산림토양(山林土壤)에 석회(石灰), 황산고토(黃酸苦土) 및 복합비료(複合肥料) 시비(施肥)가 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Yoo, Jeong-Hwan;Byun, Jae-Kyoung;Kim, Choonsig;Lee, Choong Hwa;Kim, Young-Kul;Lee, Won-Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.341-346
    • /
    • 1998
  • The effects of CaO, $CaO+MgSO_4$, and $CaO+MgSO_4$+compound fertilizers(NPK) on soil chemical properties of acidified forest soils were studied in Quercus spp. and Pinus rigida stands in Mt. Namsan and Mt. Surak in urban areas, and Kwangnung in a mountain area. The soil samples were collected in November 1995 after every year fertilization from November 1991 through April 1995. The fertilizations affected soil chemical properties. Soil pH increased after fertilizations compared with control. However, the effect was different between the stand types and the areas. Organic matter and total nitrogen content were not changed, while exchangable cations such as calcium and magnesium increased after fertilizations. However, these ration concentrations after fertilizer treatments were lower in P. rigida than in Quercus spp. stands. These rations also showed increased leaching characteristics more in the urban area than in the mountain area.

  • PDF

Binding of the Hexavalent Chromium Ions in the Process of Cement Hydration (시멘트 수화에 따른 6가 크롬의 고정화 특성)

  • Jung, Min-Sun;Hwang, Jun-Pil;Hong, Sung-In;Ann, Ki-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.88-94
    • /
    • 2013
  • The hexavalent chromium (Cr(VI)) is well known as a hazardous ion, presumably inducing dermatic diseases and if serious cancer. The present study concerns the binding capacity of Cr(VI) ions in the cement powder and matrix for a quantitative technique of Cr(VI) ions in cement to influence human health. Both the water-soluble and acid-soluble Cr(VI) ions present in 3 types of ordinary Portland cement (OPC), pulverised fuel ash (PFA), ground granulated blast furnace slag (GGBS), and silica fume (SF) were measured using the spectrophotometer. As a result, it was found that the concentration of water-soluble Cr(VI) ion in cement ranged from 10.5 to 18.9mg/kg-cement, and in the additional materials a very low value of Cr(VI) ion was measured. Acid-soluble Cr(VI) ion was even higher than water-soluble Cr(VI) ion, ranging from 172.4 to 318.2mg/kg-cement. Nevertheless, the concentration of acid-soluble Cr(VI) ion is not proportional to addition of acid. It depends rather the variable pH of solvent involving cement paste. As enough cement hydration occurs, the binding capacity of Cr(VI) ion increases, inhibiting this ions from leaching out in the presence of hydration products such as ettringite or tri-calcium aluminate which bind Cr(VI) ion by ion-exchange.

Mechanical and Germination Characteristics of Stabilized Dredged Soil (고화준설토의 역학적 특성과 식생 발아 특성)

  • Lee, Miji;Mun, Kyoungju;Yoon, Gillim;Eum, Hyunmi;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.33-40
    • /
    • 2014
  • In this paper, mechanical and germination characteristics of stabilized dredged soils were investigated to recycle dredged soil in eco-friendly manner such as waterfront construction. Non sintering binder (NSB), which was developed by using interchemical reactions between slag, high-calcium fly ash, alkali activator on the dredged marine clay, was added to dredged soil. Ordinary portland cement was also used for the comparison of two binders. Experimental tests such as flow test and unconfined compressive test were carried out to evaluate characteristics of stabilized dredged soil. Leaching test, pH measure, vegetation germination test were also conducted to consider environmental applicability. The unconfined compressive tests shows that unconfined compressive strength (UCS) also increases with the increase of curing time and mixed ratio. UCS of NSB mixtures were higher than those of OPC mixtures. Germination tests showed that germination and sprouting date are better in NSB mixture than OPC mixture. It can be explained that germination decreased as pH and 7-day strength increased.

Effects of Fire on Vegetation and Soil Nutrients in Mt. Chiak (치악산의 식생과 토양에 미친 산불의 영향)

  • 박봉규;김종희
    • Journal of Plant Biology
    • /
    • v.24 no.1
    • /
    • pp.31-45
    • /
    • 1981
  • The purpose of this study aimed to study effects of fire on vegetation and soil properties after the first growing season in Mt. Chiak. 1. With the basis of importance value of species in each stand, status of species was assessed for three categories; Increaser species, Decreaser species, and Neutral species. 2. Biomass was 2.2 times higher on burned area than unburned. This indicates that biomass was remarkably increased after fire. 3. To evaluate similarity, coefficients of similarity among communities were obtained, and correlation coefficients were also estimated. These indices showed that burned and unburned community were markedly different.. $B_1$-stand and $B_1$-stand appeared most similar to each other among stands. 4. Species diversity was greater in burned than unburned stands. 5. Soil pH value and organic matter content in burned area were significantly higher than those in unburned area. However, soil water content was lower in burned area. There was no effect of burning on soil pH value and water content at 15~20 cm depth of soil. 6. All chemical compositions except sodium were much higher in soil surface. The decreases in sodium levels at surface were probably resulted from the rapid leaching due to the increased solubility and decreased capacity for adsorption of sodium in comparison with potassium or calcium. Among chemical compositions of soil amount of nitrogen showed least difference between the burneb and unburned surfaces soil.

  • PDF

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.

Effect of Long-Term Application of Ammonium Sulfate, Urea, Composts, and Calcium Silicate on Macroelements and Rice Yields in Paddy Soil (논토양(土壤)에서 황산(黃酸)암모늄, 요소(尿素), 퇴비(堆肥) 및 규산질비료(珪酸質肥料)의 연용(連用)이 다량원소(多量元素)의 행동(行動)과 벼 수량(收量)에 미치는 영향(影響))

  • Park, Jun-Kyu;Oh, Wang-Keun;Kim, Weon-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.287-292
    • /
    • 1990
  • A study has been conducted since 1954 to elucidate the effects of longterm application of ammonium sulfate (AS), urea, compost, and calcium silicate(CS) fertilizers on major soil nutrients and rice yields in wetland soil. The soil pH in the AS plot become lower than that in the urea plot but had little influence on rice yield. Continuous application of AS and urea with compost and CS raised the soil pH compared with single applications of AS or urea. Soil organic matter content increased yearly in plot with no fertilizer and in those with AS and urea, and increased considerably in plots with compost and CS. Application of compost and CS promoted rice top growth as well as root growth, resulting in increased dry matter. Soil contents of N, $P_2O_5$, Ca, Mg, and $SiO_2$ in the NPK with composts plot increased considerably compared with the NPK plot; however. the exchangeable K content was rather low. Rice growth increased with compost application. which enhanced K uptake, and the coarse texture promoted K leaching. With compost and CS addition, con tents of exchangeable Ca and Mg in the AS plot decreased considerably more than in the urea plot. Probably this was the result of higher Ca and Mg precipitation by sulfate in the AS plot. The re are no significant differences in rice yield between AS and urea plots. With compost and CS treatments, rice yields increased in the AS plot compared with the urea plot. The increase in yield is considered to be the effect of S. which is a constituent of AS.

  • PDF