• Title/Summary/Keyword: calcium leaching

Search Result 78, Processing Time 0.025 seconds

Stabilization of fluorine in soil using calcium hydroxide and its potential human health risk

  • Jeong, Seulki;Kim, Doyoung;Yoon, Hye-On
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.654-661
    • /
    • 2019
  • This study assessed the stabilization of fluorine (F)-contaminated soil using calcium hydroxide (Ca(OH)2) and the consequent changes in human health risk. The bioavailable F decreased to 3.5%, (i.e., 57.9 ± 1.27 mg/kg in 6% Ca(OH)2-treated soil sample) from 43.0%, (i.e., 711 ± 23.4 mg/kg in control soil sample). This resulted from the conversion of water-soluble F to stable calcium fluoride, which was confirmed by XRD spectrometry. Soil ingestion, inhalation of fugitive dust from soil, and water ingestion were selected as exposure pathways for human health risk assessment. Non-carcinogenic risks of F in soils reduced to less than 1.0 after stabilization, ranging from 4.2 to 0.34 for child and from 3.0 to 0.25 for adult. Contaminated water ingestion owing to the leaching of F from soil to groundwater was considered as a major exposure pathway. The risks through soil ingestion and inhalation of fugitive dust from soil were insignificant both before and after stabilization, although F concentration exceeded the Korean soil regulatory level before stabilization. Our data suggested that substantial risk to human health owing to various potential exposure pathways could be addressed by managing F present in soil.

Removal of Iron and Phosphorus from Metallurgical Grade Silicon by Melting with Ca and Aqua Regia Leaching (칼슘 첨가(添加)-용융(溶融) 금속급(金屬級) 실리콘의 왕수(王水) 침출(浸出)에 의한 철(鐵)과 인(憐)의 제거(除去))

  • SaKong, Seong-Dae;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.34-39
    • /
    • 2011
  • Metallurgical grade silicon(MG-Si) was melted with Ca at 1500$^{\circ}C$ under Ar atmosphere. The sample was cooled at 10 $^{\circ}C$/min to room temperature and leached in aqua regia. In the present study, the effect of Ca addition and conditions of acid leaching on removal of Fe and P in MG-Si were investigated. CaSi$_2$ phase was formed at the grain boundary of MG-Si melting with Ca. Also FeSi$_2$ phase was precipitated in CaSi$_2$ phase. By the formation of CaSi$_2$ phase, 97% of Fe and 66 % of P were removed from Ca added MG-Si with the particle size of 600~850${\mu}m$ by aqua regia(more than 30%) leaching.

Engineering characteristics and field demonstrations of solidified sludges (고형화 슬러지의 공학적 특성 및 현장적용성 분석)

  • 고용국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.593-596
    • /
    • 2003
  • The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride, thus is friendly to the environment, and has a function of soil-cement-agent solidification. In this study, a series of laboratory and field experiments including unconfined compressive strength, permeability, pH test, constituent analysis, leaching test were carried out to analyse engineering and environmental characteristics of solidified sludge. The results of this research showed that the solidified sludge could be efficiently used in covering, filling, and planting materials.

  • PDF

A Study on Development of a Liner Manufactured by Mine Wastes and Polymer (광산폐기물과 폴리머를 이용한 Liner 개발에 관한 연구)

  • 진호일
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Development of an effective liner by utilization of the tailings frm the Imcheon mine and polymer has been tried. The tailings piled in the Imcheon mine, whose true specific gravity is about 2.86, are composed mainly of quartz, alkali-feldspar, muscovite and pyrite, and mostly (93.7% in volume) coarser than sand grain size (50${\mu}{\textrm}{m}$). Strength, leaching and permeability tests have been performed on the test specimens of polymer concrete manufactured with various mixing proportions of tailings, unsaturated polyester resins(UPR), calcium carbonates, stone powder sludges and granite soils. Polymer concrete specimens with stone powder sludges or granite soils as fillers and aggregates indicate 2.5 to 3 fold higher flexural and compressive strengths and lower permeabilities than those with calcium carbonates, which shows their usability as a waterproof liner. Also, the polymer concrete liner with stone powder sludge fillers is more advisable in aspects of utilization of waste sludges than that with other fillers.

  • PDF

Impurity analysis and acid leaching purification of silica minerals (실리카광물의 산침출 정제와 불순물 분석법 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Chae, Young-Bae
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.516-523
    • /
    • 2007
  • Purification of silica mineral has been investigated by acid leaching of pulverized silica. A series of studies has been carried out on the effect of leaching silica powder as a function of the leaching time at the constant temperature of $80^{\circ}C$ in oxalic acid, aqua regia, and two mixed acids of HF/HCl, $HF/HNO_3$. The impurities of silica and leachantes were measured by neutron activation analysis (NAA), inductively coupled plasma atomic emission spectrometry (ICP-AES), atomic absorption spectrometry, x-ray fluorescence (XRF) method and wet analysis (WA). Certain metals, such as sodium, calcium, iron, aluminium and titanium, have been found in concentrations of hundreds or even thousands of mg/kg. Comparison of purification processes of silica and analytical methods of impurities in the silica was conducted in this study.

A Study on the Development of Rapidly Hardening Grouting Method for the Effective Filling in the Underground Cavity (지하공동의 효율적 충전을 위한 급결 충전 그라우트공법개발에 관한 연구)

  • Kim, Soo-Lo;Kim, Tae-Heok;Shin, Dong-Chun;Kwon, Hyun-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.534-544
    • /
    • 2009
  • The collapse of the underground cavity can cause the abrupt local subsidence of the ground surface. It can be hazardous to the stability of road and building for human activity. Therefore it is necessary to develop reinforcement methods for the filling of the underground cavity. This study was executed to improve the material quality and systems to fill the calcium-aluminate mineral $(C_{12}A_7)$ environmentally, and minimize the loss of filling materials for the steep underground cavity. Filling material which was developed in this study is composed of rapid hardening material and additives. The developed material had rapid hardening and non-separation ability in the water cavity condition, so it made the effective underground dam in the cavity with prevention of material loss when it was poured in the water cavity. Results of heavy metal leaching test for environmental assessment showed that it was environmentally suiTable material for the filling in the mine cavity.

The Extraction of Ca in Electric arc Furnace Slag for CO2 Sequestration (CO2고정화(固定化)를 위한 전기로제강(電氣爐製鋼)슬래그의 칼슘성분(成分) 침출(浸出))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 2013
  • Mineral carbonation has been proposed as a possible way for $CO_2$ sequestration. The electric arc furnace slags consist of calcium, magnesium and aluminum silicates in various combinations. If they could be used instead of natural mineral silicates for carbonation, considerable energy savings and $CO_2$ emissions reductions could be achieved. Indirect aqueous carbonation of the slags consists of two steps, extraction of calcium and carbonation. Acetic acid leaching of electric arc furnace slags had been already studied to extract Ca in them, but it was reported that the carbonation of the extracted $Ca^{2+}$ in the leached solution would suffer from too slow kinetics, even at high pressure of $CO_2$. In this work, to develop more efficient extraction of the electric arc furnace slags, hydrochloric acid leaching to separate calcium from them was studied, and the results were compared with the acetic acid ones. The phase boundary between $Ca^{2+}$ and $CaCO_3$ in the solution with pH was determined by thermodynamic calculations. Hydrochloric acid was more effective than acetic acid for the extraction of Ca in electric arc furnace slag, and there is a possibility to recycle an unreacted hydrochloric acid in the leached solution by electrolysis or evaporation.

Enhancement of the Characteristics of Cement Matrix by the Accelerated Carbonation Reaction of Portlandite with Supercritical Carbon Dioxide

  • Kim, In-Tae;Kim, Hwan-Young;Park, Geun-Il;Yoo, Jae-Hyung;Kim, Joon-Hyung;Seo, Yong-Chil
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.586-591
    • /
    • 2001
  • This research investigated the feasibility of the accelerated carbonation of cement waste forms with carbon dioxide in a supercritical state. Hydraulic cement has been used as a main solidification matrix for the immobilization of radioactive and/or hazardous wastes. As a result of the hydration reaction for major compounds of portland cement, portlandite (Ca(OH)$_2$) is present in the hydrated cement waste form. The chemical durability of a cement form is expected to increase by converting portlandite to the less soluble calcite (CaCO$_3$). For a faster reaction of portlandite with carbon dioxide, SCCD (supercritical carbon dioxide) rather than gaseous $CO_2$, in ambient pressure is used. The cement forms fabricated with an addition of slated lime or Na-bentonite were cured under ambient conditions for 28days and then treated with SCCD in an autoclave maintained at 34$^{\circ}C$ and 80atm. After SCCD treatment, the physicochemical properties of cement matrices were analyzed to evaluate the effectiveness of accelerated carbonation reaction. Conversion of parts of portlandite to calcite by the carbonation reaction with SCCD was verified by XRD (X-ray diffraction) analysis and the composition of portlandite and calcite was estimated using thermogravimetric (TG) data. After SCCD treatment, tile cement density slightly increased by about 1.5% regardless of the SCCD treatment time. The leaching behavior of cement, tested in accordance with an ISO leach test method at 7$0^{\circ}C$ for over 300 days, showed a proportional relationship to the square root of the leaching time, so the major leaching mechanism of cement matrix was diffusion controlled. The cumulative fraction leached (CFL) of calcium decreased by more than 50% after SCCD treatment. It might be concluded that the enhancement of the characteristics of a cement matrix by an accelerated carbonation reaction with SCCD is possible to some extent.

  • PDF

Leaching Characteristics and Potential Impact Assessment of Pollutants from Field Test Cells with Coal Bottom Ash as Fill Materials for Recycling (석탄 바닥재 메움재 재활용을 위한 Field Test Cells로부터 오염물질 배출 특성 및 잠재적 영향 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Kang, Heeseok;Lee, Seunghun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2013
  • The recycling of coal bottom ash generated from coal power plants in Korea has been limited due to heterogenous characteristics of the materials. The most common management option for the ash is disposal in landfills (i.e. ash pond) near ocean. The presence of large coarse and fine materials in the ash has prompted the desire to beneficially use it in an application such as fill materials. Prior to reuse application as fill materials, the potential risks to the environment must be assessed with regard to the impacts. In this study, a total of nine test cells with bottom ash samples collected from pretreated bottom ash piles and coal ash pond in a coal-fired power plant were constructed and operated under the field conditions to evaluate the leachability over a period of 210 days. Leachate samples from the test cells were analyzed for a number of chemical parameters (e.g., pH, salinity, electrical conductance, anions, and metals). The concentrations of chemicals detected in the leachate were compared to appropriate standards (drinking water standard) with dilution attenuation factor, if possible, to assess potential leaching risks to the surrounding area. Based on the leachate analysis, most of the samples showed slightly high pH values for the coal ash contained test cells, and contained several ions such as sodium, potassium, calcium, magnesium, chloride, sulfate, and nitrate in relatively large quantities. Three elements (aluminum, boron, and barium) were commonly detected above their respective detection limits in a number of leachate samples, especially in the early leaching period of time. The results of the test cell study indicate that the pollutants in the leachate from the coal ash test cells were not of a major concern in terms of leaching risk to surface water and groundwater under field conditions as fill materials. However, care must be taken in extending these results to actual applications because the results presented in this study are based on the limited field test settings and time frame. Structural characteristics and analysis for coal bottom ash may be warranted to apply the materials to actual field conditions.

Effect of Calcium Chloride and Sodium Chloride on the Leaching Behavior of Heavy Metals in Roadside Sediments (염화칼슘과 소금이 도로변 퇴적물의 중금속 용출에 미치는 영향)

  • Lee Pyeong koo;Yu Youn hee;Yun Sung taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.15-23
    • /
    • 2004
  • Deicer operations provide traffic safety during winter driving conditions in urban areas. Using large quantities of de-icing chemicals (i.e., $CaCl_2$ and NaCl) can cause serious environmental problems and may change behaviors of heavy metals in roadside sediments, resulting in an increase in mobilization of heavy metals due to complexation of heavy metals with chloride ions. To examine effect of de-icing salt concentration on the leaching behaviors and mobility of heavy metals (cadmium, zinc, copper, lead, arsenic, nickel, chromium, cobalt, manganese, and iron), leaching experiments were conducted on roadside sediments collected from Seoul city using de-icing salt solutions having various concentrations (0.01-5.0M). Results indicate that zinc, copper, and manganese in roadside sediments were easily mobilized, whereas chromium and cobalt remain strongly fixed. The zinc, copper and manganese concentrations measured in the leaching experiments were relatively high. De-icing salts can cause a decrease in partitioning between adsorbed (or precipitated) and dissolved metals, resulting in an increase in concentrations of dissolved metals in salt laden snowmelt. As a result, run-off water quality can be degraded. The de-icing salt applied on the road surface also lead to infiltration and contamination of heavy metal to groundwater.