• Title/Summary/Keyword: calcium ions

Search Result 427, Processing Time 0.031 seconds

Inhibition Effects of $Ca^{2+}$ and $F^-$ Ion on Struvite Crystallization ($Ca^{2+}$$F^-$ 이온이 Struvite 결정화 반응에 미치는 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.730-737
    • /
    • 2010
  • It is very important to remove fluoride ion before treating semiconductor wastewater containing high concentration of ammonia, phosphates, and fluoride ions by struvite formation. Calcium ion was generally added for the removal of fluoride ion. However, calcium ions remained after removal of fluoride ion can deteriorate the performance of struvite crystalization. It should be removed completely before struvite formation. In this study, the effect of fluoride and calcium ion concentration on the struvite crystalization was investigated. Removal efficiencies of ortho-phosphate with struvite formation were more abruptly decreased than those of ammonium nitrogen, as increase of fluoride ion concentration in synthetic wastewater. The structures of struvite formed in synthetic wastewater containing calcium ion of up to 500 mg/L were identical. Purity of struvite was deteriorated as increase of calcium ion over 500 mg/L. Removal efficiencies of ammonium nitrogen were more decreased than those of phosphate ions as increase of cacium ion in synthetic wastewater.

A Highly Selective and Sensitive Calcium(II)-Selective PVC Membrane Based on Dimethyl 1-(4-Nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate as a Novel Ionophore

  • Zamani, Hassan Ali;Abedini-Torghabeh, Javad;Ganjali, Mohammad Reza
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2006
  • Dimethyl 1-(4-nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate has been used as an ionophore and o-nitrophenyloctyl ether as a plasticizer in order to develop a poly(vinyl chloride)-based membrane electrode for calcium ion detection. The sensors exhibit significantly enhanced response towards calcium(II) ions over the concentration range $8.0{\times}10^{-7}\;1.0{\times}10^{-1}$ M at pH 3.0-11 with a lower detection limit of $5.0 {\times}10^{-7}$ M. The sensors display Nernstian slope of 29.5 ${\pm}$ 0.5 mV per decade for Ca(II) ions. Effects of plasticizers, lipophilic salts and various foreign common ions are tested. It has a fast response time within 10 s over the entire concentration range and can be used for at least 2 months without any divergence in potentials. The proposed electrode revealed good selectivity and response for $Ca^{2+}$ over a wide variety of other metal ions. The selectivity of the sensor is comparable with those reported for other such electrodes. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a Ca(II) solution, with EDTA.

Calcium Channel Blockers Suppress the Responses of Rat Dorsal Horn Cell to Nociceptive Input (쥐 척수후각세포의 유해자극 반응에 대한 칼슘이온통로 차단제의 억제작용)

  • Kang, Sok-Han;Kim, Kee-Soon;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.625-637
    • /
    • 1997
  • Calcium ions are implicated in a variety of physiological functions, including enzyme activity, membrane excitability, neurotransmitter release, and synaptic transmission, etc. Calcium antagonists have been known to be effective for the treatment of exertional angina and essential hypertension. Selective and nonselective voltage-dependent calcium channel blockers also have inhibitory action on the acute and tonic pain behaviors resulting from thermal stimulation, subcutaneous formalin injection and nerve injury. This study was undertaken to investigate the effects of iontophoretically applied $Ca^{++}$ and its antagonists on the responses of WDR (wide dynamic range) cells to sensory inputs. The responses of WDR cells to graded electrical stimulation of the afferent nerve and also to thermal stimulation of the receptive field were recorded before and after iontophoretical application of $Ca^{++}$, EGTA, $Mn^{++}$, verapamil, ${\omega}-conotoxin$ GVIA, ${\omega}-conotoxin$ MVIIC and ${\omega}-agatoxin$ IVA. Also studied were the effects of a few calcium antagonists on the C-fiber responses of WDR cells sensitized by subcutaneous injection of mustard oil (10%). Calcium ions and calcium channel antagonists ($Mn^{++}$, verapamil, ${\omega}-conotoxin$ GVIA & ${\omega}-agatoxin$ IVA) current-dependently suppressed the C-fiber responses of WDR cells without any significant effects on the A-fiber responses. But ${\omega}-conotoxin$ MVIIC did not have any inhibitory actions on the responses of WDR cell to A-fiber, C-fiber and thermal stimulation. Iontophoretically applied EGTA augmented the WDR cell responses to C-fiber and thermal stimulations while spinal application of EGTA for about $20{\sim}30\;min$ strongly inhibited the C-fiber responses. The augmenting and the inhibitory actions of EGTA were blocked by calcium ions. The WDR cell responses to thermal stimulation of the receptive field were reduced by iontophoretical application of $Ca^{++}$, verapamil, ${\omega}-agatoxin$ IVA, and ${\omega}-conotoxin$ GVIA but not by ${\omega}-conotoxin$ MVIIC. The responses of WDR cells to C-fiber stimulation were augmented after subcutaneous injection of mustard oil (10%, 0.15 ml) into the receptive field and these sensitized C-fiber responses were strongly suppressed by iontophoretically applied $Ca^{++}$, verapamil, ${\omega}-conotoxin$ GVIA and ${\omega}-agatoxin$ IVA. These experimental findings suggest that in the rat spinal cord, L-, N-, and P-type, but not Q-type, voltage-sensitive calcium channels are implicated in the calcium antagonist-induced inhibition of the normal and the sensitized responses of WDR cells to C-fiber and thermal stimulation, and that the suppressive effect of calcium and augmenting action of EGTA on WDR cell responses are due to changes in excitability of the cell.

  • PDF

Enhancement of Neural Death by Nerve Growth Factor

  • Chung, Jun-Mo;Hong, Jin-Hee
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.200-204
    • /
    • 1996
  • Nerve growth factor (NGF) is literally known to promote neural differentiation and survival in several peripheral and central neurons. Thus, it is Widely believed that NGF may serve as a therapeutic agent for many types of neuronal diseases. One of the mechanisms suggested to explain the protective role of NGF is that the trophic factor can prevent the increase of intracellular calcium ions which might be responsible for neural death. To examine whether or not the calcium hypothesis works even under pathological conditions, we applied NGF to cultures deprived of glucose. Surprisingly, what was observed here is that NGF rather promoted cell death under a glucose-deprived condition. What we call the NGF paradox phenomenon occurred in a calcium concentration-dependent manner, indirectly suggesting that NGF might increase intracellular calcium ions in cells deprived of glucose. This suggestion is further supported by the fact that nifedipine, a well-known L-type calcium channel blocker, could block the cell death potentiated by NGF. Here it is still premature to propose the complete mechanism underlying the NGF paradox phenomenon. However, this study certainly indicates that NGF as a therapeutic agent for neuronal diseases should be carefully considered before use.

  • PDF

Removal of Fluoride Ions from Electronic Industrial Wastewater Using Lime Stone Slurry (초미분말 석회석 현탁액을 이용한 전자산업 폐수 불소이온 제거연구)

  • Park, Hyeon Soo;Park, Yeon Soo;Jung, Goo Ill;Kim, Jae Woo;Jo, Young Min
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.258-263
    • /
    • 2018
  • This study attempted to utilize ultrafine precipitated calcium carbonate for fluoride removal from the wastewater of electronics industries. An average particle size of the calcium carbonate was $0.96{\mu}m$, and pH of the aqueous slurry was 10 with 70% in mass. The suspension solution showed approximately 2 mL/hr of the sedimentation rate. The present calcium carbonate solution could be comparable to the conventional aqueous calcium source, $Ca(OH)_2$, for the neutralization and removal of fluoride ions. Depending on the amount of an additional alkali source, less amounts of test Ca-source slurries were required to reach the solution pH of 7.0 than that of using the aqueous calcium hydroxide. It was also found from XRD analysis that more calcium fluoride precipitates were formed by the addition of calcium carbonate solution rather than that of calcium hydroxide. In addition, Minteq equilibrium modelling estimated various ion complexes of fluoride and calcium in this process.

Calcium Ionization Characteristics and In vitro Bioavailability Derived from Natural Calcium Sources (천연칼슘소재의 이온화 특성 및 In vitro 칼슘 이용률)

  • Jang, Se-Young;Jeong, Yong-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.4
    • /
    • pp.497-504
    • /
    • 2013
  • This study examined the characteristics of ionized calcium and in vitro calcium bioavailability rate of calcium from four natural sources: shellfish shell, oyster shell, starfish, egg shell. The levels of dissolved calcium and calcium ions increased at different concentrations of natural calcium (up to 8.0% (w/v)). However, there were insignificant differences in the levels of dissolved calcium and calcium ions between samples at calcium concentrations above 8.0% (w/v). In addition, no significant differences were observed (depending on the calcium source and concentration) with an ionization yield of about 90%. The temperature of the solutions also had little influence on the ionization of calcium. The highest calcium ion content was observed when solutions were left to dissolve calcium for 18 hours. The highest in vitro calcium bioavailability rate achieved among the different calcium solutions was BS (67.3%), with overall bioavailability rates about two times higher than the rates observed in commercially sold calcium supplements and natural calcium. In addition, the in vitro calcium bioavailability rate for ionized calcium in market milk, soy milk, and orange juice was more than twice as high as calcium carbonate. Overall, we expect a high and diverse bioavailability of ionized calcium from natural resources.

Removal Characteristics of Strontium and Cesium tons by Zeolite Synthesized from Fly Ash (석탄회로 합성한 제올라이트에 의한 Sr(II) 및 Cs(I) 이온의 제거 특성)

  • 감상규;이동환;문명준;이민규
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1061-1069
    • /
    • 2003
  • The adsorption behaviors of strontium and cesium ions on fly ash, natural zeolites, and zeolites synthesized from fly ash were investigated. The zeolites synthesized from fly ash had greater adsorption capabilities for strontium and cesium ions than the original fly ash and natural zeolites. The maximum adsorption capacity of synthetic zeolite for strontium and cesium ions was 100 and 154 mg/g, respectively, It was found that the Freundlich isotherm model could fit the adsorption isotherm. The distribution coefficients (K$\_$d/) for strontium and cesium ions were also calculated from the adsorption isotherm data, The distribution coefficients decreased with increasing equilibrium concentration of strontium and cesium ions in solution. By studying the removal of cesium and strontium ions in the presence of calcium, magnesium, sodium, potassium, sulfate, nitrate, nitrite, and EDTA (in the range of 0.01 - 5 mM) it was found that these coexistence ions competed for the same adsorption sites with strontium and cesium ions.

Adsorption of Metal Ions on OenNdien Resin (OenNdien수지에 의한 금속 이온의 흡착)

  • Kang Young-Shik;Rho Gi-Hwan;Kim Joon-Tae
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.27-35
    • /
    • 2005
  • The ion exchange resins have been synthesized from chlormethyl styrene - 1,4 -divinyl-benzene(DVB) with $1\%,\;4\%,\;and\;10\%$-crosslinking and macrocyclic ligand of cryptand type by copolymerization method and the adsorption characteristics of uranium(VI), calcium(II) and lutetium(III) metallic ions have been investigated in various experimental conditions. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time, dielectric constant of solvent and crosslink on adsorption of metallic ions were investigated. The uranium ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium $(UO_2^{2+})>calcium(Ca^{2+})>lutetium(Lu^{3+})$ ion. The adsorption was order of $1\%,\;4\%,\;and\;10\%$ crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.

Comparative Analysis of the Physical and Biochemical Properties of Light-cure Resin-modified Pulp Capping Materials

  • Tae Gyeom Kim;Jongsoo Kim;Joonhaeng Lee;Jisun Shin;Mi Ran Han;Jongbin Kim;Yujin Kim;Jae Hee Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.149-164
    • /
    • 2024
  • This study compared the solubility, water absorption, dimensional stability, release of various ions (hydroxyl, calcium, sulfur, strontium, and silicon), and cytotoxicity of light-cured resin-modified pulp-capping materials. Resin-modified calcium hydroxide (Ultra-blendTM plus, UBP), light-cured resin-modified calcium silicate (TheraCal LCTM, TLC), and dual-cure resin-modified calcium silicate (TheraCal PTTM, TPT) were used. Each material was polymerized; solubility, 24-hour water absorption, and 30- day dimensional stability experiments were conducted to test its physical properties. Solubility was assessed according to the ISO 6876 standard, and 24 hours of water absorption, 30 days of dimensional stability were assessed by referring to the previous protocol respectively. Eluates at 3 and 24 hours and on 7, 14, and 28 days were analyzed according to the ISO 10993-12 standard. And the pH, Ion-releasing ability, cell proliferation rate, and cell viability were assessed using the eluates to evaluate biochemical characteristics. pH was measured with a pH meter and Ion-releasing ability was assessed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Cell proliferation rate and cell viability were assessed using human dental pulp cells (hDPCs). The former was assessed by an absorbance assay using the CCK-8 solution, and the latter was assessed by Live and Dead staining. TPT exhibited lower solubility and water absorption than TLC. UBP and TPT demonstrated higher stability than TLC. The release of sulfur, strontium, calcium, and hydroxyl ions was higher for TLC and TPT than for UBP. The 28-day release of hydroxyl and silicon ions was similar for TLC and TPT. TLC alone exhibited a lower cell proliferation rate compared to the control group at a dilution ratio of 1 : 2 in cell proliferation and dead cells from Live and Dead assay evaluation. Thus, when using light-cure resin-modified pulp-capping materials, calcium silicate-based materials can be considered alternatives to calcium hydroxide-based materials. Moreover, when comparing physical and biochemical properties, TPT could be prioritized over TLC as the first choice.

Diffusion study for chloride ions and water molecules in C-S-H gel in nano-scale using molecular dynamics: Case study of tobermorite

  • Zehtab, Behnam;Tarighat, Amir
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.305-317
    • /
    • 2016
  • Porous materials such as concrete could be subjected to aggressive ions transport. Durability of cement paste is extremely depended on water and ions penetration into its interior sections. These ions transport could lead different damages depending on reactivity of ions, their concentrations and diffusion coefficients. In this paper, chloride diffusion process in cement hydrates is simulated at atomistic scale using molecular dynamics. Most important phase of cement hydrates is calcium silicate hydrate (C-S-H). Tobermorite, one of the most famous crystal analogues of C-S-H, is used as substrate in the simulation model. To conduct simulation, a nanopore is considered in the middle of simulation cell to place water molecules and aggressive ions. Different chloride salts are considered in models to find out which one is better for calculation of the transport properties. Diffusion coefficients of water molecules and chloride ions are calculated and validated with existing analytical and experimental works. There are relatively good agreements among simulation outputs and experimental results.