• Title/Summary/Keyword: calcium chloride solution

Search Result 181, Processing Time 0.025 seconds

A Study on Soil Cementation and Calcite Precipitation with Clay as a Medium (점토를 매개체로 한 탄산칼슘 석출 및 흙의 고결에 관한 연구)

  • Park, Sung-Sik;Suh, Eun-Hee;Chae, Kyung-Hyeon;Jang, Sang Kyu;Kim, Jin-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.17-27
    • /
    • 2015
  • In this study, we tried to precipitate calcium carbonate with carbonate ions decomposed from urea by plant extract and calcium ions dissolved in water. The clay particles carry a net negative charge on their surfaces. Such clay mineral was additionally mixed as a medium to improve soil strength and durability with environmentally-friendly way. The $1^{st}$ solution (plant extracts and urea) and the $2^{nd}$ solution (calcium chloride and clay) were mixed together with clean Nakdong River sand. Then, this mixed soil was compacted into a small cylindrical specimen and then air cured for 7 days in laboratory. The molar concentration of urea and calcium chloride was tested for three different conditions, 1, 5, and 7 mol. Three different clay contents (0, 1, and 3% per total weight) were mixed with sand. For each specimen, a series of unconfined compression test, a durability test, SEM, EDX and XRD analyses were carried out to evaluate its cementation and structure. As the molar concentration of the solution and clay content increased, the unconfined compressive strength and durability increased. The results of SEM, EDX and XRD analyses showed that calcite was precipitated around clay mineral. The thermogravimetry analysis indicated that calcium carbonate precipitated about 1~2% per total weight of the sample.

Corrosion Evaluation of Epoxy-coated Bars in Chloride Contaminated Concrete Using Linear Polarization Tests (염화물 환경에 있는 에폭시도막철근의 부식 평가 연구)

  • Park, Young-Su;Choi, Kyong-Min;Jung, Si-Young;Kim, Byoung-Kook;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.254-257
    • /
    • 2006
  • Five bench scale specimens were used to evaluate corrosion performance of damaged epoxy-coated bars in chloride contaminated concrete. The test specimens were subjected 48 weekly cycles of ponding with sodium chloride solution and drying. Test results using linear polarization technique show that the current density of specimen with conventional steel becomes $0.715\;{\mu}A/cm^2$ indicating that the steel bars are in moderate or high corrosion condition. However, the corrosion rates of the specimens with damaged epoxy coated bars are much below $0.1\;{\mu}A/cm^2$ and the bars appears to be in passive condition. The corrosion protection performance provided by calcium nitrite is better than that of specimens with the other two inhibitors.

  • PDF

A Study on the anti-Corrosion Properties of Inhibitor in Aqueous Solution (수용액내에서의 방청제 부식성능 평가연구)

  • Ryu, Hwa-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.221-223
    • /
    • 2011
  • In this study, in order to comprehend performance of corrosion inhibitor, the experiment study was conducted about corrosion characteristic of 3 steps(0.0, norm 1/2, norm) compared to organic corrosion inhibitor standard use of liquid and molar 3 steps(0.0, 0.3, 0.6%) of Chloride by added amount of inorganic corrosion inhibitor by the corrosion inhibitor types about 2.4kg/㎥, 4.8kg/㎥ based on Chloride ion content 1.2kg/㎥ for service life prediction of concrete structure by using Poteniostat.

  • PDF

Synthesis of nano-crystalline slaked lime using design of experiment (실험계획법을 이용한 나노 결정 소석회 합성)

  • Kim, Jin-Seong;Kim, Jung-Woo;Lee, Hee-Soo;Kim, Yong-Nam;Shin, Hyun-Gyoo;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.174-178
    • /
    • 2008
  • Nano-crystalline slaked lime was synthesized using design of experiment. In order to synthesize slaked lime, calcium chloride $(CaCl_2)$ and urea were used as starting materials. Calcium chloride solution and urea solution were mixed and heated in vessel that calcium carbonate was precipitated during heating. Precipitates were filtered, washed several times using D.I.water and ethanol and finally dried in oven. Slaked lime $(Ca(OH)_2)$ has been fabricated by the hydration of calcined $CaCO_3$. Design of experiment (Taguchi method) was used to optimize parameter, to minimize noise factors of experiment and to statistically analyze the results. Slaked lime having about 50 nm in optimized crystallite size could be obtained by calcination of $CaCO_3$ at $1000^{\circ}C$ for 0.5 h and hydration with D.I water containing ethanol and oxalic acid.

Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels (스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용)

  • Kim Sung-Yu;Kim Hee-San
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.70-76
    • /
    • 2006
  • Micro-droplet cell with free droplet as a micro-electrochemical technique has been limited to apply to electrochemical systems with high wetting properties such as an acidic solution and low grade stainless steels(Type 316L). By loading negative pressure to a droplet, control of droplet size, and use of hydrophobic gasket, the cell is modified to be allowed to use for electrochemical systems with high wetting properties. For giving the reliability of new cell, studies on local corrosion were conducted for three different systems-an acidic chloride solution and high chromium ferritic stainless steel, the other acidic chloride solution and type 316, and a neutral chloride solution and type 316. stainless steel. Firstly, the modified micro-droplet cell allows the anodic polarization curves in an acidic chloride solution to show the fact that the local corrosion of high chromium stainless steel near the $\alpha/\sigma$ interface is due to the Cr depleted zone. Secondly, the local anodic polarization test of type 316 L in the other acidic chloride solution can be successfully conducted in the cell. Furthermore, the local polarization curves help elucidating the corrosion of type 316 with $\delta-ferrite$ phase. Finally, the polarization curves of type 316 L in a neutral chloride solution indicates that the factor affecting the pitting corrosion resistance was inclusions rather than $\delta-ferrite$.

Studies on the Surface Modification of Fabrics Treated with Fibroin Solution (액상 견 Fibroin 처리 직물의 표면가공에 관한 연구)

  • 이용우;이광길
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.1
    • /
    • pp.56-61
    • /
    • 1997
  • The silk fibroin solution was prepared and applied to the surface of fabrics for the purpose of weighting as well as a surface modification. The water-soluble fibroin solution can be obtained by dissolving the cocoon fibroin in a boiling solution of 50% calcium chloride for 60 minutes. For the fixation of a water soluble fibroin onto the fabric surface, the various methods were investigated. The fixation can be achieved on a silk fabric by the after treatment with ethanol, stannous choride and methacrylamide. On the other hand, the epichlorhydrin compound is the most promising fixation agent for a cotton fabric. As a result of the examination of property changes, the softness and crease recovery were lessened for a silk crepe fabric by treating with 1-2% fibroin solution, while those properties were improved for a silk knit fabric.

  • PDF

Studies on the Fermentative Utilization of Cellulosic Wastes (part III) Production of Yeast from the Hydrolyzate of Rice straw, Rice hull and Corn Starch Pulp. (폐섬유자원의 발효공학적 이용에 관한 연구 (제3보) 볏짚, 왕겨및 전분박 당화액을 이용한 효모배양)

  • 성낙계;심기환;이천수
    • Microbiology and Biotechnology Letters
    • /
    • v.4 no.4
    • /
    • pp.152-158
    • /
    • 1976
  • Cultivation condition of yeast on the utilization of fermentable substrate from the cellulosic wastes such as rice hull, rice straw and corn starch cake was investigated. The results obtained were summarized as follows;1. Corn starch cake was respectively added to rice hull and rice straw in order to increase sugar concentration in the hydrolyzate, and then hydrolyzed. As the result, concentration of sugar in hydrolyzed solution of rice hull was 9.12%, in that of rice straw was 7.98%. 2. It was found that calcium carbonate as a neutralizer was the most effective to prepare the culture broth of yeast. 3. An optimal growth of Hansenula subpelliculosa GFY-2 was observed in the medium prepared by adding 0.3% of ammonium sulfate, 0.4% of potassium phosphate dibasic, 0.02% of magnesium sulfate, sodium chloride and calcium chloride to hydrolyaed sugar solution, respectively. 4. Hansenula subpellicuiosa GFY-2 cultured in the substrate solution which of rice hull and rice straw added to corn starch cake was assimilated more than 90% of sugar in the hydrolyzate within 48 hours. The yeast cells yielded in rice hull was 46.5%, and that of rice straw 45.4% to utilized sugars.

  • PDF

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.

A Clinical Study of Changes in Serum Electrolyte Concentration During and After Extracorporeal Circulation with Heart-Lung Machine (심폐기 체외순환에 의한 혈청 전해질 변동에 관한 연구)

  • 김근호
    • Journal of Chest Surgery
    • /
    • v.11 no.4
    • /
    • pp.404-415
    • /
    • 1978
  • The present study was carried out to develop the better measures for safety of open heart surgery under extracorporeal circulation (ECC) with Heart-Lung-Machine by preventing changes in the concentrations of serum electrolytes during and after ECC. For this purpose, the cocentrations of serum electrolytes were measured before, during, and after ECC in 21 patients with congenital and acquired heart diseases who received open heart surger, - under ECC using Heart-Lung-Machine. Also considered was the development of safety measured by which changes in serum electrolyte concentrations were prevented during and after open heart surgery under ECC. The mean values for serum sodium levels were observed to be ; $13.14{\pm}0.47$mEq./L. for the samples obtained before ECC. $139.59{\pm}0.68$mEq./L. for the samples obtained 10 minutes after ECC and $138.0{\pm}0.68$mEq./L. for the samples obt"ined 24 hours after ECC. These results indicate that serum sodium concentrations were \\'ithin normal range during and until 24 hours after ECC. 2) The concentrations of serum chloride were found to be $105.38{\pm}0.70$105.38$\pm$0. 70 mEq./L. for the samples collected before ECC, $105.07{\pm}1.01$mEq./L. for the Simples collected 24 minutes aiter ECC and $101.95{\pm}1.09$mEq./L. for the samples collectect 24 hours afte ECC. As was tile case with serum sodium levels, no significant changes were observed in serum chloride levels during and 24 hours after ECC. 3)With proper provisions of potassium chloride solution during ECC, the concentrations of serum potassium were found to be $4.22{\pm}0.06$mEq./L. for the samples removed before EeC, $4.06{\pm}0.14$mEq./L. for the samples removed 10 minutes after ECC and $4.39{\pm}0.07$ mEq./L. for the samples removed 24 hours after ECC. 4)The concentrations of serum calcium were also maintained within normal during and after ECC; $9.15{\pm}0.14$mg/dl for the serum collected before ECC, $8.36{\pm}0.21$mg/dI for the serum collected 10 minutes after ECC and $8.47{\pm}0.14$mg/dl 21 hours after ECC. The maintenance of serum calcium level within normal throughout ECC was achieved by parenteral administrations of calcium gluconate as frequent as required. 5) As were the cases with serum potassium and calcium, the concentrations of plasma bicarbonate was regulated within normal range during and after ECC, only when sodium bicarbonate solution was admini"tered parenterally as it was required; $23.7{\pm}0.50$mEq./L. for the serum collected before ECC. $22.33{\pm}1.09$mEq.lL. for the serum collected 10 minutes after ECC and $25.3{\pm}0.96$mEq./L. for the serum collected 24 hours after ECC. The above results indicate tha t during and after ECC serum sodium and chloride levels remined unchanged without any provision of normal saline, while serum potassium, calcium, and bicarbonate concentrations were kept within normal limits only when these ealectrolytes were administered through parenteral routes. With these results it can be concluded that serum potassium, calcium, and bicarbonate levels should be determined as often as possible during and after ECC and that in order to maintain serum electrolyte levels within normal these electrolytes in the forms of potassium chloride, calcium gluconate, and sodium bicarbonate shou'd be given parenterally as they were found to be required.

  • PDF

Different Effect of Sodium Chloride Replacement with Calcium Chloride on Proteolytic Enzyme Activities and Quality Characteristics of Spent Hen Samgyetang

  • Barido, Farouq Heidar;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.869-882
    • /
    • 2021
  • Sodium chloride (NaCl) replacement with calcium chloride (CaCl2) effect on protein solubility, proteolytic enzyme and quality characteristics of a chicken soup prepared from spent hen (SH) chicken were investigated. By means of immerse marination prior to cooking, a total of 60 skinless SH breast meat were randomly allocated into ten groups admitted to treatments with marinade solution containing sodium tripolyphosphate (STPP) and reduced percentage of NaCl with CaCl2 at 0%, 25%, 50%, 75%, and 100% at 4±2℃ for 20 h. STPP was adjusted to 0.5% for all treatments and NaCl replacement at 0% was used as control. The different methods, particularly boiling at 100℃ and retorting at 121℃, 1.5 kgf/cm2 for 60 minutes, were applied following marination. An upregulation of cathepsin-B and caspase-3 enzymes were a consequences from a higher percentage of CaCl2 within meat environment. Accordingly, modified the protein solubility in particular the myofibrillar and total protein solubility. In addition, a significant increase in water holding capacity (WHC), pH value, myofibril fragmentation index (MFI), and moisture content was obtained due to salt replacement (p<0.05). Limited effect was observed for shear force value, collagen content and cooking yield. Eventually, this study implied that although protelytic enzyme and protein solubility was upregulated by the replacement of NaCl with CaCl2 at >75%, extensive effect on texture properties was not observed. Therefore, NaCl replacement at 75% could be a promising strategy for quality improvement of SH chicken soup.