• Title/Summary/Keyword: calcium carbonate

Search Result 753, Processing Time 0.025 seconds

Rheological Properties of Polyamide-Modified PVC-sol Sealants (폴리아미드가 함유된 PVC졸 실란트의 유변학적 물성)

  • Lee, Seung-Jin;Lee, Won-Ki;Kang, Tae-Kyu;Jo, Won-Je;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.345-354
    • /
    • 1998
  • Rheological properties of polyamide-modified poly(vinyl choride) (PVC)-sol sealants were investigated. PVC-sol was prepared by plasticization with dioctyl phthalate(DOP). Two kinds of polyamide rosins having different amino values and thus different viscosities were compared. The effects of the polyamide types and contents on the viscosities, thixotropic indices, and specific gravities of the PVC-sol were discussed. It was found that viscosities of the PVC-sol sealants were significantly affected by the types of the added polyamide resins, and the thixotropic index of the polyamide-modified PVC-sol sealant was observed to be dependent on the contents(not on the types of the polyamides). The viscosity behaviors of the polyamide-modified PVC-sol sealants aged at $45^{\circ}C$ and the effect of the addition of $CaCO_3$ were also discussed.

  • PDF

Elastomer Nanocomposites(I) (엘라스토머 나노복합체(I))

  • Bang, Dae-Suk;Kye, Hyoung-San;Cho, Ur-Ryong;Min, Byung-Gak;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.22-33
    • /
    • 2009
  • Recently, elastomer-nanocomposites reinforced with low volume fraction of nanofillers have attracted great interest due to their fascinating properties. The incorporation of nanofillers, such as, layered silicate clays, carbon nanotubes, nanofibers, calcium carbonate, metal oxides or silica nanoparticles into elastomers improves significantly their mechanical, thermal, dynamic mechanical, barrier properties, flame retardancy, etc. The properties of nanocomposites depend greatly on the chemistry of polymer matrices, nature of nanofillers, and the method in which they are prepared. The uniform dispersion of nanofillers in elastomer matrices is a general prerequisite for achieving desired mechanical and physical characteristics. In this paper, current developments in the field of elastomer nanocomposites reinforced with layered silicates, silica, carbon nanotubes, nanofibers and various other nanoparticles have been addressed.

Healing after Implantation of Bone Substitutes and Safflower Seeds Feeding in Rat Calvarial Defects (백서 두개골 결손부의 골 대체물 이식과 홍화씨 섭취 후의 치유양상)

  • You, kyung-Tae;Choi, Kwang-Soo;Yun, Gi-Yon;Kim, Eun-Chul;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.91-104
    • /
    • 2000
  • Many synthetic bone materials have been studied for their potential of regenerative effects in periodontal tissue. Safflower seeds have been traditionally used as a drug for the treatment of fracture and blood stasis in oriental medicines. The purpose of this study was to assess and compare the osseous responses in rat calvarial defects between bone substitutes such as calcium carbonate and bovine-derived hydroxyapatite and feeding of safflower seeds. The calvarial defects were made with 8 mm trephine bur in 24 Sprague-Dawley rats. Two graft materials were implanted in each experimental groups, whereas the control and safflower seed feeding groups were sutured without any other treatment. And then the rats of safflower seed feeding group were supplied with 3 g/day of safflower seeds. Each group was sacrificed at 4 weeks and 8 weeks. To study a histopathology related to bone healing and regeneration, Goldner's Masson Trichrome stain was done at each weeks. The tissue response was evaluated under light microscope. There were more osteoblastic activity, new bone formation, dense bony connective tissues in bovine-derived hydroxyapatite group compared to other groups at 8 weeks. The osseous defect area of safflower seed feeding group was filled with prominent fibrous tissues, where less inflammatory infiltration and new capillary proliferation. In the early phase of bone healing, safflower seed feeding reduces the inflammatory response and promotes the proliferation of connective tissue. These results suggest that natural bovine-derived HA and safflower seed feeding could enhance the regenerative potential in periodontal defects.

  • PDF

Assessment of Palm Press Fibre and Sawdust-Based Substrate Formulas for Efficient Carpophore Production of Lentinus squarrosulus (Mont.) Singer

  • Osibe, Dandy Ahamefula;Chiejina, Nneka Virginia
    • Mycobiology
    • /
    • v.43 no.4
    • /
    • pp.467-474
    • /
    • 2015
  • Development of efficient substrate formulas to improve yield and shorten production time is one of the prerequisites for commercial cultivation of edible mushrooms. In this study, fifteen substrate formulas consisting of varying ratios of palm press fibre (PPF), mahogany sawdust (MS), Gmelina sawdust, wheat bran (WB), and fixed proportions of 1% calcium carbonate ($CaCO_3$) and 1% sucrose were assessed for efficient Lentinus squarrosulus production. Proximate compositions of mushrooms produced on the different substrate formulas were also analysed and compared. Substrate formulations containing 85% PPF, 13% WB, 1% $CaCO_3$, and 1% sucrose were found to produce the highest carpophore yield, biological efficiency and size (206.5 g/kg, 61.96%, and 7.26 g, respectively). Days to production (first harvest) tended to increase with an increase in the amount of WB in the substrate formulas, except for PPF based formulas. The addition of WB in amounts equivalent to 8~18% in substrate formulas containing 80~90% PPF resulted in a decrease in the time to first harvest by an average of 17.7 days compared to 80~90% MS with similar treatment. Nutritional content of mushrooms was affected by the different substrate formulas. Protein content was high for mushrooms produced on formulas containing PPF as the basal substrate. Thus, formulas comprising PPF, WB, $CaCO_3$, and sucrose at 85% : 13% : 1% : 1%) respectively could be explored as starter basal ingredients for efficient large scale production of L. squarrosulus.

Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites (리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상)

  • Son, Jungil;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

Kimchi Quality Affected by the Addition of Grapefruit Seed Extract Powder (자몽종자추출물 분말제재를 첨가한 김치의 저장성 연장)

  • 박우포;장덕규
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.288-292
    • /
    • 2003
  • Grapefruit seed extract powder (GFSEP), which was made with grapefruit seed extract and calcium carbonate, was investigated to retard the fermentation rate. The mixing ratios of GFSEP to salted Chinese cabbage were 0.1, 0.3 and 0.5%. Quality characteristics of kimchi such as pH, titratable acidity, reducing sugar content and microbial loads were measured during fermentation at 10$^{\circ}C$. pH and reducing sugar content of control and kimchi sample with 0.1% GFSEP showed decreases until 10 days, and then attained to stabilized levels. Kimchi samples with 0.3% and 0.5% GFSEP maintained a higher pH and reducing sugar content, while microbial load was lower than others. Based on the pH and tit ratable acidity, kimchi samples with GFSEP prolong the shelf life about 3~10 days.

A New Streptothricin Family Antibiotic Producing Streptomyces Spp. Snus 8810-111 ; Characterization of The Producing Organisms, Fermentation, Isolation, and Structure Elucidation of Antibioitics

  • Goo, Yang-Mo;Kim, Ok-Yun;Joe, Young-Ae;Lee, Young-Bok;Ju, Jeongho;Kim, Beom-Beom-Tae;Lee, Youn-Young
    • Archives of Pharmacal Research
    • /
    • v.19 no.2
    • /
    • pp.153-159
    • /
    • 1996
  • A new streptothricin family antibiotic producing Streptomyces spp. SNUS 8810-111 was isolated from a soil sample. Study of its morphological and physiological characters indicated that the antibiotic producing organism was a Streptomyces spp. Taxonomical studies suggested that the organism might belong to the genus streptomyces gougeroti. The organism produced antibiotics most in calcium carbonate-tryptic soy broth. The active principles were recovered from the broth with a cation exchange resin and eluted from the resin with HCI. Cellulose column chromatography gave two active principles.$^1H-^1H$ Homo-COSY study on the first compound revealed four structural components. Total hydrolysis of the antibiotic with HCI allowed isolation of $\beta-lysine$. From these data the antibiotic was found to be streptothricin D. The other compound showed one additional signal in the .$^1H$NMR and the $^{13}C$ NMR spectra. The signal was from a methyl group attached to a nitrogen atom. Comparison of the NMR signals with those of streptothricin D suggested that the compound was N-methyl-streptothricin D which was a new compound in the family of streptothricin antibiotics.

  • PDF

A Study on the Formation of Spinel Pigment(Green Pigment based on Magnesium-Chrome) (Spinel Pigment의 생성반응에 관한 연구)

  • 이응상;박철원;황성연
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 1975
  • This study was conducted to research the formation, color development and application for colored glazes of the spinel solid solutions of the green pigment. On specimens prepared by calcining the oxide and basic carbonate mixture at 1250℃ for 1.5 hour, the x-ray analysis, measurement of reflectance and the test of their stabiality as a glaze pigment were carried out. The results are summarized as follows 1) Each sample is composed of single spinel and not of mixture of spinel. 2) Formation of continuous soild solution, except for a few instances, pertaining to Vegard's law was confirmed by means of the x-ray analysis. 3) The more difference between absorption and reflectance lies, the lighter colors are. When the absorption occurs at the high-reflectance, the excitation purity becomes low. On the contrary when the absorption takes place at the low-reflectance, the excitation purity becomes low. On the contrary when the absorption takes place at the low-reflectance, the excitation purity is higher. 4) Colors obtained in the CdO-MgO-Cr2O3-Al2O3 system, as the amounts of Al3+ increased, change from green through brown to pink, and the absorption peak shifts towards violet region. 5) An increase in Co2+ in the CoO-MgO-Cr2O3-Al2O3 system, changes the color from blue green to dark blue. The excitation purity is higher, and the absorption peak shifts toward regions. 6) Colors are green in the NiO-MgO-Cr2O3 and CdO-MgO-Cr2O3 systems in general, but in the ZnO-MgO-Cr2O3 system brillant hue is not obtained. 70 According to the results of the colored glaze test, the spinels turn outto be stable as brilliant glaze pigment in the calcium-magnesia glaze.

  • PDF

Formation of Calcareous Deposit on Steel Plate by using Waste Oyster Shell (강판상에 굴 패각을 이용한 탄산칼슘 피막의 형성)

  • Kim, Beomsoo;Kwon, Jaesung;Kim, Yeonwon;Lee, Myeonghoon;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.531-535
    • /
    • 2017
  • Enormous amount of waste oyster-shell (OS) has a major disposal problem in coastal regions. OSs have attracted much attention for recycling, because these are mainly composed of calcium carbonate with rare impurities. In this study, we demonstrate the calcareous deposit films on steel plate by using OSs on the basic of cathodic protection technique. The composition of the OSs was analyzed by wavelength dispersive X-ray fluorescence spectrometer. Carbon dioxide gas was pumped into distilled water to make carbonic acid solution for dissolution of OS. The calcareous deposit was characterized by second electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction. Corrosion rates were estimated by measurements of anodic polarization and immersion test. It is confirmed that calcareous deposits on steel plate are formed under all condition of cathodic protection by using waste OS from the SEM and EDX results. Calcareous deposits on steel by OS provide good corrosion resistance by acting as a barrier to oxygen supply to the steel surface.

Application of Antifungal CFB to Increase the Durability of Cement Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1015-1020
    • /
    • 2012
  • Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calcite-forming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed $CaCO_3$ precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at $18^{\circ}C$ for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the $CaCO_3$ precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.