• Title/Summary/Keyword: calcium adsorption

Search Result 130, Processing Time 0.034 seconds

THE EFFECT OF FILLERS ON THE DEINKING OF PHOTOCOPIED PAPER

  • Chen, Qing-min;Chang, Hou-min;Ethan K. Andrews;Heinz G. Olf
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.159-163
    • /
    • 1999
  • Model experiments were conducted to investigate the effect of different fillers on the removal of toner ink. Combinations of different papers (commercial photocopy paper and filler-free paper), fillers (calcium carbonate, kaolin clay, and talc), and chemicals(1-octadecanol, stearic acid, oleic acid, and TOFA) and stearic acid were found to be effective in detachment and agglomeration of toner ink. Furthermore, pH had little effect on toner detachment and agglomeration, indicating both protonated fatty acids and their anions are equally effective. In the presence of either kaolin clay or talc, all these agglomerating agents are equally effective, although a slightly higher dosage(1% for clay and 2% for talc as compared with control) is required, presumably due to the adsorption of chemical by the filler. Calcium carbonate filler, on the other hand, has a significant and adverse effect on the fatty acids used but has little effect on 1-octadecanol with the exception of possible adsorption. While stearic acid is not effective, a much higher level of oleic acid or TOFA is needed when calcium carbonate fillers are present as compared to the filler-free case. Fatty acids react with calcium carbonate to form calcium salts. The availability of fatty acid anion for toner detachment and agglomeration is determined by the solubility of calcium salt of a given fatty acid. Calcium oleate is 10 times more soluble in water than calcium stearate.

The Removal Kinetics of Mn and Co from the Contaminated Solutions by Various Calcium Carbonate Surfaces (다양한 방해석 표면에 대한 Mn과 Co 흡착 기작)

  • H., Yoon;Ko, K.S.;Kim, S.J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.219-222
    • /
    • 2004
  • Removal characteristics of Mn and Co was studied from the contaminated solutions via surface reaction with various calcium carbonate (calcite). Synthetic calcium carbonates which has different surface morphology as well as surface areas were prepared by a spontaneous precipitation method and used. Mn and Co removal behavior by the different solid surface demonstrate characteristic sorption behaviors depend on the type of calcite used, such as surface area or surface morphology. Calcium carbonate crystals (mostly calcite) which exhibit complicated surface morphology (c-type) shows strong sorption affinity for Mn and Co removal via sorption than on the a-type or b-type calcite crystals of less complicated surfaces. The applicability of two kinetic models, the pseudo-first-order kinetic equation and the Elovich kinetic model was examined on these sorption behavior. Elovich kinetic model was found more suitable to explain the very early stage adsorption kinetics, while the pseudo-first-order kinetic equation was successfully fitted for the adsorption kinetics after 50 hours.

  • PDF

A Study on Phosphate Removal Efficiency by Pre-Treatment Conditioning of Oyster Shells (굴 패각의 전처리 조건에 따른 인산염 제거효율에 관한 연구)

  • Woo, Hee-Eun;Kim, Kyeongmin;Lee, In-Cheol;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.196-202
    • /
    • 2018
  • In this study, we investigated phosphate removal efficiency according to pretreatment (pyrolysis temperature, pyrolysis time, particle size) of oyster shells as a basic study for their recycling. And XAFS analysis and isothermal adsorption experiments were performed to investigate the phosphate removal characteristics of oyster shells. As a result, the removal efficiency was good at $600^{\circ}C$ pyrolysis temperature with 6 hour pyrolysis time and 0.355 ~ 0.075 mm particle size. Isothermal adsorption experiments showed that the Langmuir model is suitable for adsorption of oyster shells. XAFS analysis showed that calcium phosphate formed on the oyster shell pyrolyzed at $600^{\circ}C$. In other words, it was confirmed that the formation of calcium phosphate by the calcium ion elution of the oyster shell contributes to the decrease of phosphate concentration.

Adsorption Behavior of Pb2+ Ions on Alginate Beads and Capsules (알지네이트 비드와 캡슐에서의 납 이온의 흡착거동)

  • Shin, Eun Woo;Thuong, Nguyen Thi Lien;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.166-171
    • /
    • 2007
  • The adsorption behavior of $Pb^{2+}$ was compared between calcium alginate beads and capsules, which have different structures of alginate-gel core beads and liquid core alginate-membrane capsules, respectively. In terms of adsorption kinetics and isotherms, adsorption characteristics depending on pH and hardening time were compared for both adsorbents and also released calcium ion during the adsorption process was monitored. The adsorption of $Pb^{2+}$ on both adsorbents was caused by surface complexation and ion exchange mechanisms, both of which have similar effects on adsorption process regardless of the amount of adsorbed $Pb^{2+}$. The dependence of $Pb^{2+}$ adsorption upon pH was also similar for both adsorbents indicating the existence of similar functional groups on the surface of adsorbents. However, a different $Pb^{2+}$ adsorption behavior was observed considering the adsorption kinetics. The adsorption kinetic of $Pb^{2+}$ on alginate beads was slower than on alginate capsules and the maximum adsorption loading ($Q_{max}$) onto alginate beads was also less than onto alginate capsules by 49%. This drawback of alginate beads compared to capsules were ascribed to a diffusion limitation due to solid gel-core structure of alginate beads.

Adsorption Characteristics of U ranium (VI) Ion on Cryptand Synthetic Resin Adsorbent

  • Kim, Hae-Jin
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.225-231
    • /
    • 2017
  • Cryptand resins were synthesized by mixing 1-aza-18-crown-6 macrocyclic ligand with styrene divinylbenzene copolymer having 1%, 2%, 5%, and 10% crosslink by a substitution reaction. These synthetic resins were confirmed by chlorine content, elementary analysis, SEM, surface area, and IR-spectrum. As the results of the effects of pH, crosslink of synthetic resin, and dielectric constant of a solvent on uranium ion adsorption for resin adsorbent, the uranium ion showed high adsorption at pH 3 or over. Adsorption selectivity for the resin in methanol solvent was the order of uranium ($UO_2{^{2+}}$) > calcium ($Ca^{2+}$) > neodymium ($Nd^{3+}$) ion, adsorbability of the uranium ion was the crosslink in order of 1%, 2%, 5%, and 10% and it was increased with the lower dielectric constant.

Experiment on Chloride Adsorption by Calcium Aluminate Phases in Cement (시멘트내 칼슘 알루미네이트 상에 의한 염소이온의 흡착반응 연구)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2017
  • Friedel's salt is an important product of chemical adsorption between cement hydrate and chloride ions because it contains chlorine in its structure. When cement reacts with water in the presence of chloride ions, the $C_3A$ phase, and $C_4AF$ phase react with chloride to produce Friedel's salt. If chloride ions penetrate into concrete from external environments, many calcium aluminate hydrates, including AFm, can bind chloride ions. It is very important, therefore, to investigate the chloride binding isotherm of $C_3A$ phase, $C_4AF$ phase, and AFm phase to gain a better understanding of chloride binding in cementitious materials. Meanwhile, the adsorption isotherm can provide us with the fundamental information for the understanding of adsorption process. The experimental results of the isotherm can supply not only the quantitative knowledge of the cement-Friedel's salt system, but also the mechanism of adsorption and the properties of their interactions. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with $C_3A$, $C_4AF$ and AFm phases. The chloride adsorption isotherm was depicted with Langmuir isotherm and the adsorption capacity was low in terms of the stoichiometric point of view. However, the chloride adsorption of AFm phase was depicted with Freundlich isotherm and the value was very low. Since the amount of the adsorption was governed by temperature, the affecting parameters of isotherm were expressed as a function of temperature.

Evaluation of Air Pollutant Adsorption Performance of Potassium and Calcium Ion-Exchanged Zeolite (칼륨 및 칼슘 이온으로 치환된 제올라이트의 대기오염물질 흡착 성능 평가)

  • Ye Hwan Lee;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.313-317
    • /
    • 2023
  • In this study, the physicochemical characterization and adsorption performance of air pollutants (VOCs, SO2, and CO2) were evaluated for the recycling of zeolite used in the ion exchange process. The surface characteristics of the zeolite used were confirmed through Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) analysis, and the composition and specific surface area were measured through X-Ray Fluorescence (XRF) and Brunauer-Emmett-Teller (BET). There was no change in the surface properties of the used zeolite, but the content of potassium and calcium increased and the specific surface area decreased. The toluene, sulfur oxides, and carbon dioxide adsorption performance of the used zeolite was evaluated, and it was confirmed that the performance was improved compared to the fresh zeolite. In particular, for toluene and sulfur oxides, the adsorption amount increased by 2.6 times and 2.3 times, respectively, which might be due to the enhancement of the polymerization reaction and the increase of the base point, according to the composition of the used zeolite.

Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water

  • Nnabuk Okon Eddy;Rajni Garg;Rishav Garg;Samson I. Eze;Emeka Chima Ogoko;Henrietta Ijeoma Kelle;Richard Alexis Ukpe;Raphael Ogbodo;Favour Chijoke
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.35-48
    • /
    • 2023
  • Nanoparticles are known for their outstanding properties such as particle size, surface area, optical and electrical properties. These properties have significantly boasted their applications in various surface phenomena. In this work, calcium oxide nanoparticles were synthesized from periwinkle shells as an approach towards waste management through resource recovery. The sol gel method was used for the synthesis. The nanoparticles were characterized using X-Ray diffractometer (XRD), Fourier Transformed Infra-Red Spectrophotometer (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultra violet visible spectrophotometer (UV-visible). While DLS and SEM underestimate the particle diameter, the BET analysis reveals surface area of 138.998 m2/g, pore volume = 0.167 m3/g and pore diameter of 2.47 nm. The nanoparticles were also employed as an adsorbent for the purification of dye (methyl orange) contaminated water. The adsorbent showed excellent removal efficiency (up to 97 %) for the dye through the mechanism of physical adsorption. The adsorption of the dye fitted the Langmuir and Temkin models. Analysis of FTIR spectrum after adsorption complemented with computational chemistry modelling to reveal the imine nitrogen group as the site for the adsorption of the dye unto the nanomaterials. The synthesized nanomaterials have an average particle size of 24 nm, showed a unique XRD peak and is thermally and mechanically stable within the investigated temperature range (30 to 70 ℃).

Dissociative adsorption and self-assembly of $CaF_2$ on the Si(001)-$4^{\circ}$ off surface

  • Kim, Hui-Dong;Dugerjav, Otgonbayar;Arvishataar, Amarmunkh;Motlak, Moaaed;Seo, Jae-Myeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.132-132
    • /
    • 2012
  • Depositing $CaF_2$[0.6% lattice-mismatch] on the Si(001)-$4^{\circ}$ off surface [composed of a single (001) domain with regularly-arrayed double-layer DB steps and located between (1 1 19) and (1 1 21)] held at $700^{\circ}C$, $CaF_2$ molecules are preferentially adsorbed on the dimers and dissociated to Ca and F atoms. Dissociated Ca atoms form a silicide layer of a $2{\times}3$ structure on the (001) terrace, while F atoms are desorbed from the surface. Once the terrace is covered with a calcium silicide layer, CaF starts to be adsorbed selectively on the steps, as shown in Fig. (a). With $CaF_2$ deposition exceeding 1 ML, the (1 1 17) surface having 1-D $CaF_2$ nanodots are formed as shown in Fig. (b). By the present STM study, it has been clearly disclosed that the calcium silicide interfacial layer is preformed prior to adsorption of $CaF_2$ on vicinal Si(001) surface.

  • PDF

Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Rallapalli, Phani Brahma Somayajulu;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.562-568
    • /
    • 2019
  • Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.