• Title/Summary/Keyword: calcined diatomite powder

Search Result 8, Processing Time 0.03 seconds

Strength Characteristics of Mortar with Diatomite Powder as an Admixture (혼화재료로서 규조토 분말을 사용한 모르타르의 강도 특성)

  • Choi, Jaejin;Park, Hongtae;Kim, Jaewoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.329-336
    • /
    • 2015
  • When diatomite powder was used as an admixture in mortar, its effects on the mortar strength was examined by experimental tests. For the tests, 4 kinds of commercially available diatomite powder were purchased ; one non-calcined product, one calcined product, and flux-calcined product two. The compressive and flexural strength of the mortar according to the increase of added amount of calcined diatomite powder increased at all test ages(7, 28, and 56 days). However, the use of non-calcined diatomite powder worsened the fluidity of mortar severely and that caused much more required water content. And flux-calcined product did not show useful effect on the mortar strength.

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

Study on the Thermal Conduction of Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 콘크리트의 열전도 특성에 관한 연구)

  • Kim, Jung-Ho;Park, Young-Shin;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.280-281
    • /
    • 2014
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. Therefore, various actions to reduce greenhouse gas and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. But a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research is structural insulation concrete what improved insulation performance using micro form admixture and calcined diatomite powder and lightweight aggregate.

  • PDF

Durability of Concrete Using Insulation Performance Improvement Materials (단열성능 향상 재료를 사용한 콘크리트의 내구성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kim, Se-Hwan;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, we tested to develop and apply structural insulation performance improvement concrete to field, which had compressive strength in 24 MPa and thermal conductivity twice as much as normal concrete. After experiment about slump and air contents, combination product of Plain and calcined diatomite powder showed reduction of slump and air contents and combination product with micro foam cell admixture, we cannot find result of slump and air contents reduction. Unit weight of combination product with insulation performance improvement materials decreased more than that of Plain. In the test of compressive strength, compressive strength of insulation performance improvement concrete decreased more than that of Plain but was content with 24 MPa. thermal conductivity of insulation performance improvement concrete tended to decrease. Freezing and thawing resistance of insulation performance improvement concrete was similar to that of Plain. In carbonation resistance test, combination product with calcined diatomite powder showed the result which was similar to that of Plain. In carbonation resistance test, combination product with micro foam cell admixture showed a increase compared to that of Plain and length variation of combination product generally increased.

Study on the Thermal Characteristics of Concrete Using Insulation Performance Improve Material Complex (단열성능향상 재료를 혼합 사용한 콘크리트의 열전도 특성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kang, Sung-Hyuk;Kim, Se-Hwan;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.40-41
    • /
    • 2013
  • The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete compising more than 70% of outsider of buildings has been tried. This research is structural insulation concrete what improved insulation performance using micro form admixture and calcined diatomite powedr and lightweight aggregate.

  • PDF

Study on the Field Application of Insulation Performance Improvement Concrete (단열성능 향상 콘크리트의 현장 적용성 평가에 관한 연구)

  • Kang, Sung-Hyuk;Kim, Jung-Ho;Choo, Kyoung-Nam;Park, Young-Shin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.17-18
    • /
    • 2014
  • Recently, climate change have increased consumption of building heating and cooling energy. Therefore, various actions to reduce greenhouse gas and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. Especially the outer covering of the building has been made of concrete more than 70%. But a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research is structural insulation concrete what improved insulation performance using Micro Form Admixture and Calcined Diatomite Powder and Lightweight Aggregate.

  • PDF

Study on the Thermal Characteristics of Concrete Using Insulation Performance Improve Material (단열성능향상 재료를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kang, Yeun-Woo;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.227-228
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. The energy consumption by buildings approximately reaches 25% of total korea energy consumption. The greatest part in the buildings of the energy consumption is building facade. but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research structural insulation concrete what improved insulation performance using insulation performance improve material.

  • PDF

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.