• Title/Summary/Keyword: caisson

Search Result 263, Processing Time 0.023 seconds

The Influence of Slit Shape on the Reflective Characteristic of Caissons in Harbor (항만구조물 반사특성에 미치는 Slit 형상의 영향)

  • Kim, Kyu-Han;Kim, Min-Soo;Lee, Kang-Chul;Ryu, Moo-Eun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.461-464
    • /
    • 2006
  • The caisson of the inner wall type has a weak point that reflecting wave is big. Therefore it has been studied that the research of the decreasing reflecting wave using installation the perforated wall in front of caisson to decrease of that weak point. In this study, we analyzed the characteristic of reflection horizontal and diamond style vertical slit caisson using hydraulic model test. According to the results of experiments, we could confirm that diamond style vertical caisson has a reflection coefficient which has lower than horizontal caisson of the reflection coefficient of 5~10%.

  • PDF

A Case Study of Caisson Typed Bridge-Foundation Fabrication and Installation in Ul-san Newport Breakwater Project (케이슨식 교량기초 제작 및 거치 시공사례 -울산 신항 방파제현장 시공 사례를 중심으로-)

  • JANG BYUNG-SOO;SIN SUNG-GWEN;KIM DUCK-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.45-50
    • /
    • 2004
  • The method of caisson typed bridge-foundation fabrication and installation applied in Ul-san newport breakwater project is throughly carried out to compact QRR mound vibro-hammer step by step to minimize settlement through stability check. Floating Dock was mobilized for caisson fabrication due to limited site area. fabricated caisson on the Floating Dock was towed to the deeper area of 8m water depth to be launched, and Floating Crane assisted launching and installation work of the caisson. finally water filling was done followed by surveying work to permanent installation.

  • PDF

Change of Water Discharge Capability of Sluice Caisson for Tidal Power Plant According to Installation of Rubble Mound (사석마운드 설치에 따른 조력발전용 수문의 통수성능 변화)

  • Lee, Dal-Soo;Oh, Sang-Ho;Yi, Jin-Hak;Park, Woo-Sun;Cho, Hyu-Sang;Kim, Duk-Gu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.266-269
    • /
    • 2008
  • In this study, the results of experimental investigation on the water discharge capability of sluice caisson for tidal power plant were presented. In particular, the focus of the study was placed on the examination of change in water discharge capability of a sluice caisson according to the installation of rubble mound. For this purpose, a hydraulic experiment was carried out in an open channel flume with a great care to the measurement of discharge and water level in the flume since they greatly affects the estimation of the discharge capability of each sluice caisson. In the analysis, the experimental data of four different sluice models were used, which showed that the installation of rubble mound affects in different manner depending on each sluice caisson model. When each of the four sluice models were placed on the rubble mound respectively, the water discharge increased for one sluice caisson, whereas decreased for other three sluice caissons. Further detailed analysis is needed to quantitatively estimate the influence of installation of rubble mound on the water discharge capability of a sluice caisson.

  • PDF

Sliding Failure of Vertical Caisson of Composite Breakwater due to Occurrence of Extreme Waves Exceeded Design Conditions (고파랑 출현에 따른 혼성제 직립 케이슨의 활동파괴)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.219-230
    • /
    • 2002
  • The sliding stability of monolithic vertical caisson of composite breakwaters is quantitatively analyzed by using a reliability model, FMA of Level II, in order to study the variation of sliding failure of caisson due to the occurrence of extreme waves exceeded deepwater design wave. The reliability index and several parameters in the wave pressure formula are inter- related to find out the effects of extreme wave exceeded design wave on the sliding failure of vertical monolithic caisson. The sliding failure of caisson seems to be largely increased as the heights and periods of extreme waves exceeded design wave increase, also depends directly on the water depth in front of the composite breakwaters. From the numerical simulations carried out with several kinds of extreme waves exceeded design wave which are assumed to be occurred during the service periods of breakwater, it is found that the effects of the wave height on the sliding failure of caisson may be more dominant than those of wave periods and angles of wave incidence.

  • PDF

Dynamic Response Analysis of Caisson Structure by Acceleration Measurement (가속도 계측을 통한 항만시설용 케이슨 구조체의 동적응답 분석)

  • Lee, So-Young;Kim, Jeong-Tae;Kim, Heon-Tae;Park, Woo-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.114-121
    • /
    • 2009
  • In this study, acceleration responses of caisson structures under various environmental conditions are experimentally examined as a basic study to develop the health assessment technique for harbor structures. To achieve the objective, three approaches are implemented. Firstly, a target caisson structure is selected and its small-scaled caisson is constructed in the laboratory. Secondly, a finite element model of the caisson is generated to identify dynamic responses of the baseline structure. Thirdly, experimental tests are performed on the caisson model to examine dynamic responses under various boundary conditions and impact locations. Four different boundary conditions, 'standing on concrete floor', 'standing on styrofoam block', 'standing on sand-mat' and 'hanging by crane', are considered and correlation coefficients of frequency response functions between four states are analyzed.

Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations

  • Lee, So-Young;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.525-539
    • /
    • 2019
  • In this study, vibration characteristics of a gravity-based caisson-foundation breakwater system are investigated for ambient and geometric parameters such as various waves, sea levels, and foundation conditions. To achieve the objective, following approaches are implemented. Firstly, operational modal analysis methods are selected to identify vibration modes from output-only dynamic responses. Secondly, a finite element model of an existing caisson-foundation breakwater system is established by using a structural analysis program, ANSYS. Thirdly, forced vibration analyses are performed on the caisson-foundation system for two types of external forces such as controlled impacts and wave-induced dynamic pressures. For the ideal impact, the wave force is converted to a triangular impulse function. For the wave flow, the wave pressure acting on the system is obtained from wave field analysis. Fourthly, vibration modes of the caisson-foundation system are identified from the forced vibration responses by combined use of the operational modal analysis methods. Finally, vibration characteristics of the caisson-foundation system are investigated under various waves, sea levels, and foundations. Relative effects of foundation conditions on vibration characteristics are distinguished from that induced by waves and sea levels.

Dispersion Effects of Wave Force on Interlocking Caisson Breakwater with Shear-Key (전단키형 인터로킹 케이슨 방파제의 파력분산효과)

  • Song, Sung Hoon;Park, Min Su;Jeong, Youn Ju;Hwang, Yoon Koog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.195-201
    • /
    • 2019
  • Long caisson breakwaters can improve the structural safety of a caisson due to the wave dispersion effect which reduces the average wave force acting on one caisson. However, in order to make long caissons, there are many manufacturing and construction limitations. Recently, interlocking caisson systems, which are to form a long caisson by interlocking individual caissons with adjacent caissons, have been much attention. In the present study, a interlocking caisson system with shear-keys was proposed and the wave dispersion effect according to the shear-key was evaluated analytically. As a result, (1) Because of the asymmetric shape of the interlocking caisson, the structure behavior and the wave dispersion effect of one are also asymmetric. (2) The wave dispersion effect is more influenced by the distribution and characteristics of wave acting on each caisson rather than the shape of the shear-key such as shear angle, height, shear length ratio. (3) The interlocking caisson breakwater is almost the same behavior and wave dispersion effect as a fully integrated breakwater.

Transformation of Irregular Waves Propagating through Slit Caisson (슬릿 케이슨을 통과하는 불규칙파의 변형)

  • Min, Hyun-Seong;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.159-162
    • /
    • 2007
  • The numerical efforts are presented for investigation of irregular waves passing a slit cassion and a warock block breakwater. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-\varepsilon$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method(VOF) is employed. Numerical predictions of reflection and transmission coefficients are compared with those of the warock block breakwater with the slit caisson. Energy dissipation and seawater exchange rates of the slit caisson are better than those of the warock block breakwater.

  • PDF

Service Life Evaluation of High Durability Concrete in Caisson Structure (케이슨 구조물 고내구성 콘크리트 내구수명 평가)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.42-43
    • /
    • 2014
  • In order to ensure the construction of sustainable reinforced concrete structures, durability evaluation of Caisson structures before construction should be carried out. In this paper, a service life evaluation technique using a safety factor determined by a reliability theory for Caisson structures subjected to chloride attack is proposed.

  • PDF

Reliability Analysis of Open Cell Caisson Breakwater Against Circular Slip Failure (무공케이슨 방파제의 원호활동에 대한 신뢰성 분석)

  • Kim, Sunghwan;Huh, Jungwon;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.193-204
    • /
    • 2019
  • Reliability analyses of sixteen domestic design cases of open cell caisson breakwaters against circular sliding failure were conducted in this study. For the reliability analyses, uncertainties of parameters of soils, mound, and concrete cap were assessed. Bishop simplified method was used to obtain load and resistance of open cell caisson breakwater for randomly generated open cell caisson breakwater. Sufficient number of Monte Carlo simulations were conducted for randomly generated open cell caisson breakwaters, and statistical analysis was conducted on loads and resistances collected from the large number of Monte Carlo simulations. Probability of failure produced from Monte Carlo simulation has a nonconvergence issue for very low probability of failure; therefore, First-Order Reliability Method (FORM) was conducted using the statistical characteristics of loads and resistances of open cell caisson breakwaters. In addition, effects of safety factor, uncertainties of load and resistance, and correlation between load and resistance on reliability of open cell caisson breakwaters against circular sliding failure were examined.