• Title/Summary/Keyword: cafestol

Search Result 6, Processing Time 0.019 seconds

Protective Effect of the Coffee Diterpenes Kahweol and Cafestol on tert-Butyl Hydroperoxide-induced Oxidative Hepatotoxicity

  • Choi, Sun-Young;Lee, Kyung-Jin;Kim, Hyung-Gyun;Han, Eun-Hee;Chung, Young-Chul;Sung, Nak-Ju;Jeong, Hye-Gwang
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1386-1392
    • /
    • 2006
  • Kahweol and cafestol significantly reduced t-BHP-induced oxidative injuries in cultured rat hepatocytes, as determined by cell cytotoxicity, intracellular glutathione (GSH) content and lipid peroxidation in a dose-dependent manner. In addition, kahweol and cafestol provided good protection from the t-BHPinduced production of intracellular reactive oxygen species and DNA damage. The in vivo study showed that pretreatment with kahweol and cafestol prior to the administration of t-BHP significantly prevented the increase in serum levels of hepatic enzyme markers (alanine aminotransferase and aspartate aminotransferase) and reduced oxidative stress, such as GSH content and lipid peroxidation, in the liver in a dose-dependent manner. The histopathological evaluation of the livers also revealed that kahweol and cafestol reduced the incidence of liver lesions induced by t-BHP. Taken together, these results support the anti-oxidative role of kahweol and cafestol and demonstrate that kahweol and cafestol can protect hepatocytes from oxidative stress.

Coffee and metabolic syndrome: A systematic review and meta-analysis (커피와 대사증후군 : 체계적 문헌고찰 및 메타분석)

  • Lee, Yujin;Son, Jakyung;Jang, Jiyoung;Park, Kyong
    • Journal of Nutrition and Health
    • /
    • v.49 no.4
    • /
    • pp.213-222
    • /
    • 2016
  • Purpose: Coffee is the most frequently consumed food item in South Korea after rice and cabbage. Coffee contains various substances, including caffeine, cafestol, kahweol, chlorogenic acid, and many other known and unknown ingredients with some health benefits. Especially, cumulative evidence has shown that regular coffee use is associated with lower risk of type 2 diabetes, although limited and inconsistent data are available regarding metabolic syndrome. Methods: This study reviewed all available scientific and epidemiologic evidence on coffee consumption, metabolic syndrome, and the association between them. Most epidemiologic research regarding this association was of a cross-sectional design, and a few case-control and cohort studies were available. We conducted meta-analysis with 11 observational studies investigated in Europe, America, and Asia. Summary odds ratios (OR) were calculated using a random-effects model. Results: The overall OR of metabolic syndrome was 0.90 (95% Confidence Interval (CI), 0.81-0.99) for the highest category of coffee intake compared with the lowest intake category. These associations were stronger in populations of US and Europe (OR 0.84, 95% CI 0.76-0.94), whereas no association was observed in the Asian population (OR 1.00, 95% CI 0.81-1.23). Conclusion: The review results indicate that frequent coffee consumption may be beneficial to metabolic syndrome, but the association between coffee consumption and metabolic syndrome may differ by nations or continents.

In vivo protein expression changes in mouse livers treated with dialyzed coffee extract as determined by IP-HPLC

  • Yoon, Cheol Soo;Kim, Min Keun;Kim, Yeon Sook;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.44.1-44.17
    • /
    • 2018
  • Background: Coffee extract has been investigated by many authors, and many minor components of coffee are known, such as polyphenols, diterpenes (kahweol and cafestol), melanoidins, and trigonelline, to have anti-inflammatory, anti-oxidant, anti-angiogenic, anticancer, chemoprotective, and hepatoprotective effects. Therefore, it is necessary to know its pharmacological effect on hepatocytes which show the most active cellular regeneration in body. Methods: In order to determine whether coffee extract has a beneficial effect on the liver, 20 C57BL/6J mice were intraperitoneally injected once with dialyzed coffee extract (DCE)-2.5 (equivalent to 2.5 cups of coffee a day in man), DCE-5, or DCE-10, or normal saline (control), and then followed by histological observation and IP-HPLC (immunoprecipitation high performance liquid chromatography) over 24 h. Results: Mice treated with DCE-2.5 or DCE-5 showed markedly hypertrophic hepatocytes with eosinophilic cytoplasms, while those treated with DCE-10 showed slightly hypertrophic hepatocytes, which were well aligned in hepatic cords with increased sinusoidal spaces. DCE induced the upregulations of cellular proliferation, growth factor/RAS signaling, cellular protection, p53-mediated apoptosis, angiogenesis, and antioxidant and protection-related proteins, and the downregulations of NFkB signaling proteins, inflammatory proteins, and oncogenic proteins in mouse livers. These protein expression changes induced by DCE were usually limited to the range ± 10%, suggesting murine hepatocytes were safely reactive to DCE within the threshold of physiological homeostasis. DCE-2.5 and DCE-5 induced relatively mild dose-dependent changes in protein expressions for cellular regeneration and de novo angiogenesis as compared with non-treated controls, whereas DCE-10 induced fluctuations in protein expressions. Conclusion: These observations suggested that DCE-2.5 and DCE-5 were safer and more beneficial to murine hepatocytes than DCE-10. It was also found that murine hepatocytes treated with DCE showed mild p53-mediated apoptosis, followed by cellular proliferation and growth devoid of fibrosis signaling (as determined by IP-HPLC), and subsequently progressed to rapid cellular regeneration and wound healing in the absence of any inflammatory reaction based on histologic observations.

Anti-inflammatory Activities of Cold Brew Coffee Using Dry Fermentation of Lactobacillus plantarum (건식발효를 이용한 유산균 더치 커피의 항염증 효과)

  • Go, Seok Hyeon;Monmai, Chaiwat;Jang, A Yeong;Lee, Hyungjae;Park, Woo Jung
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.337-343
    • /
    • 2018
  • Coffee is a commonly consumed beverage that contains anti-inflammatory compounds such as caffeine, chlorogenic acid, cafestol, trigonelline, and kahweol. Lactobacillus plantarum is a lactic acid bacterium most frequently used in the fermentation of food products of plant origin. L. plantarum is able to degrade some food phenolic compounds and provide high value-added compounds such as powerful antioxidants or food additives approved as flavouring agents. In this study, we investigated the anti-inflammatory effects of coffee extract fermented by L. plantarum on RAW264.7 macrophages. In lipopolysaccharide-stimulated RAW264.7 cells, these coffee extracts exhibited anti-inflammatory activities through the reduction of nitric oxide (NO) production and inducible NO synthase expression. Fermented coffee extracts significantly decreased the expression of inflammatory cytokines such as tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$, interleukin 6, and interferon ${\gamma}$. Cyclooxygenase-2, which is one of the key biomarkers for inflammation, was significantly suppressed. These results might be helpful for understanding the anti-inflammatory mechanism of fermented coffee extract on immune cells and, moreover, suggest that fermented coffee extract may be a beneficial anti-inflammatory agent.