• Title/Summary/Keyword: cadmium-resistant strain

Search Result 16, Processing Time 0.026 seconds

Isolation of Cadmium Ion-resistant Bacteria and Resitance to Various Heavy Metals (카드봄 내성균의 분리와 각종 중금속에 대한 저항성의 연구)

  • Yeeh, Yeehn;Lee, Jong-Kun
    • Korean Journal of Microbiology
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 1979
  • Cadimium ion-resistant microorganism was isolated from the sludge of wastewater. The physiological, morphological and other cultural data showed that this strain belonged to Citrobacter freudii. A clearcut distinction of growth among nutrient broth, typtic soy broth and synthetic medium was demonstrated. The resistant cells showed only slight mutagenic action. During the growth of bacterial population in resting state, the organisms reduced the initial level of resistance to cadmium ions when they were not kept in contact with cadmium ions in bacteral multiplication. And cadmium ion-resistant and cadmium ion-sensitive strain were found to show equal, lower or higher sensitivity to other heave metals.

  • PDF

Characterization of Azomonas agilis PY101, a Cadmium-Resistant Strain Isolated from Anyang Stream

  • You, Kyung-Man;Lee, Ji-Hyun;Kim, Jeong-Kook;Hah, Nam-Ju;Lee, Yung-Nok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.289-293
    • /
    • 1996
  • A cadimium-resistant strain isolated from Anyang stream, Azomonas agilis PY101 exhibited strong resistance to 1000 ppm of cadmium ion $(Cd^{2+})$. A agilis PY101 also exhibited resistance to various antibiotics, such as amoxicillin, amplicillin, bacitracin, cefazolin, erythromycin, penicillin, tetracycline, and vancomycin. In the presence of $Cd^{2+}$, the growth of A. agilis PY101 started after an extended lag phase and produced a green-fluorescent pigment induced by cadmium. The dramatic decrease (approximately 400ppm) of concentration of $cd^{2+}$ in the culture medium during the growth phase of A. agilis PY101 was confirmed by the inductively coupled plasma-atomic emission spectrophotometer. Transmission electron microscopic analysis revealed that A. agilis PY 101 actively accumulated $Cd^{2+}$ in the cytoplasm.

  • PDF

Plasmid-Determined Cadmium Resistance in Cocobacilli Strain B-17 Isolated from Soil. (토양에서 분리된 Cocobacilli B-17균의 Plasmid가 결정하는 Cadmium내성)

  • 방병호
    • The Korean Journal of Food And Nutrition
    • /
    • v.1 no.2
    • /
    • pp.64-67
    • /
    • 1988
  • Cadmium resistant cocobacillus B-17 from soil was tolerated up to 1600ug/ml of cadmium at agar plate and the strain B-17 was able to grow at 600ug/ml of cadmium at liquid medium after the lag phase being prolonged with lengthening culture time. Optimal pH of the strain was shown at pH7.0. The elimination frequency of cadmium resistance by 10ug/ml of acriflavin was 28%, and by 20ug/ml of ethidium bromide was 47%, respectively.

  • PDF

Resistance of Some Metal Ions on Growth of Serratia marcescens Strain P (Serratia marcescens Strain P 성장에 미치는 중금속 내성)

  • 유관희;이호용
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.693-698
    • /
    • 1992
  • The resistant effect of several heavy metal ions to Serratia marcescens strain P was studied by the method of minimal inhibitory concentration(MIC), and testing for their metal biosorption. S. marcescens strain P showed a good survival in the presence of high concentrations of some metal ions, namely cadmium, lead, iron, magnesium, and manganese. Copper had the most inhibitory effect among tested. The MIC value was ranged from 0.79 to 1.58 mM. Cells of S. marcescens strain P exhibit an abnormally long lag phase when incubated in high concentrations of zinc and cadmium. Pigment production was reduced by zinc and cadmium, but enhanced by lead and iron. S. marcescens strain P was resistant to ampicillin, tetracycline, cefamandole and chloramphenicol with minimal inhibitory concentration of 128 $\mu$g/ml, 32 $\mu$g/ml, 256 $\mu$g/ml, and 8 $\mu$g/ml, respectively. The kinetics study of biosorptive uptake by S. marcescens strain P revealed that 16.59% of cadmium and 35.38% of lead were eliminated from the media.

  • PDF

Lsolation and Characterization of Mercury- and Cadmium-resistant Bacteria isolated from Industrial complex Wastewater of Taejon Area (대전 지역의 공단 폐수에서 분리한 수은과 카드뮴 내성 세균의 분리 및 특성)

  • 유경만;전희근
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.249-258
    • /
    • 1997
  • Mercury- and cadmium-resistant bacteria were Isolated from an Industrial complex wastewater of Taejon area. All of them were motile, gram negative rods. In the results of physicochemical test and VITEK card test. HM1 was Identified with Achetobacter cd- coaceucus, CM3 was Identified 65 Commonas acidovorns, HM2, HM3, CMI , and CM4 were Pseudomonas sp., but HM4 and CM2 were unidenteed. They were tested for subceptlbility to 14 heavy metals. Mercury-resistant bacteria(HM1, HM2, HM3, and HM4) were sensitive to low concentration(100~400ppm) of $Cd^{2+}$, $Co^{2+}$. $Zn^{2+}$, and Ni2+, while cadmium-resistant bacteria(CM1, CM2, CM3, and CM4) showed resistance up to the high concentration(600~ 1, 200ppm) of these metal loons. As a result of resistance spectrum test of mercury-resistant bacteria, HM1 was broad-spectrum strain, HM2. HM3, and HM4 were narrow-spectrum stratas. Transmission electron microscopic examination of cell wall of HM1 culture grown with and without 100ppm of $HgCl_2$ showed remarkably merphological abnormalities. In the result of atomic absorption spectrometric analysis of cadmium-resistant bacteria grown at 200ppm of $CdCl_2$ for 6h, all of them accumulated cadrnium(14ppm~57ppm) In cell. In cadinium-resistant bacteria, CM1, CM2, and CM4 were spared from the Inhibitory effect of $Cd^{2+}$ by the addition of $Mn^{2+}$, CM4 were also spared from the Inhibitory effect of $Cd^{2+}$ by the addition of $Mn^{2+}$ as well as $Zn^{2+}$.

  • PDF

Characterization of a Cadmium-resistant Yeast Strain in Response to Cadmium or Heat Shock Stress

  • Huh, Nam-Eung;Choi, Nack-Shick;Seo, Young-Kyo;Yu, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 1994
  • A varient strain of budding yeast, Hansenula anomala B-7 which had been identified to be highly resistant to cadmium ions, were observed by transmission electron microscopy. It was shown that the cells accumulated excess amounts of cadmium ions throughout inside the cell rather than on the cell surface. The cell growth in response to cadmium or heat shock stress has also been investigated. It was observed that the cells precultured in the presence of 500 $\mu$ g/ml of Cd ions grew slower than those precultured at 1, 000 $\mu$ g/ml of the metal ions, when they were cultivated in the media containing 1, 000 $\mu$g/ml of the metal ions. Heat shock, however, stimulated the cell growth transiently, when the cells were allowed to grow in the presence of 1, 000 $\mu$g/ml of the metal ions. But the cells given heat shock for more than 100 min received permanent damage to growth. Effects of both stresses on budding rate was also examined. It revealed that the stresses did not change the budding ratio much, which was contradictory to that observed from the same budding yeast, Saccharomyces cerevisiae. Furthermore, the cells treated with 1, 000 $\mu$g/ml of the metal ions not only induced, but also switched off the expression of several new proteins. Some of the cadmium stress-inducible proteins were estimated to be also induced by heat shock stress.

  • PDF

Effect of Heavy Metal Resistant and Halotolerant Rhizobacterium Bacillus safensis KJW143 on Soybean under Salinty and Cadmium Exposure

  • Eun-Hae Kwon;Ho-Jun Gam;Yosep Kang;Jin-Ryeol Jeon;Ji-In Woo;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.32-32
    • /
    • 2023
  • Cadmium and salt exposure to crops is considered vulnerable for production as well as consumption. To address these challenges, the current study aimed to mitigate the toxicity induced by salt and cadmium in soybean plants through the application of bacterial strain Bacillus safensis KJW143 isolated from the rhizosphere of oriental melon..The bioassay analysis revealed that KJW143 is a highly salt-tolerant and cadmium-resistant (Cd) strain with an innate ability to produce melatonin, gibberellin (GA3), Indole-3-Acetic Acid (IAA), and organic acids (i.e., acetic, succinic, lactic, and propionic acids). Soybean plants at 20 days old were treated with KJW143 in a different form (pellet, broth, and together) and their effect on plant performance was investigated. Inoculation with KJW143enhanced plant biomass and growth attributes in soybean plants compared to the control (non-treated). In particular, we observed that only pellet-treated showed 65%, 27.5%, and 28.7% increase in growth (shoot fresh weight) compared to broth, broth with pellet, and control. In addition, bacterial strain KJW143 treatment (only pellet) modulated the physiochemical apparatus of soybean plants by increasing glucose (390%), arabinose (166%), citric acid (22.98%) and reducing hydrogen peroxide (29.7%), catalase (32.1%), salicylic acid (25.6%) compared to plants with combined stressed plants (cd and salinity). These findings suggest that bacterial strain KJW143 could be usedas a biofertilizer to minimize the probable risk of heavy metal and salinity stress on crops.

  • PDF

Isolation and Characterization of Pseudomonas sp. KM10, a Cadmium- and Mercury-resistant, and Phenol-degrading Bacterium

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.388-398
    • /
    • 1998
  • A bacterium which is resistant to both mercury and cadmium, and also capable of utilizing phenol as a carbon and energy source, was isolated from the Kumho River sediments near Kangchang Bridge, Taegu, Korea. The isolate was labeled Pseudomonas sp. KM10 and characterized. The bacteria grew in 4 mM $CdCl_2$and in $70{\mu}M$ $HgCl_2$. The bacteria efficiently removed over 90% of 1 g/l phenol within 30 h. In the presence of 1.250 g/l phenol, the growth of the microorganism was slightly retarded and the microorganism could not tolerate 1.5 g/l phenol. Curing of plasmid from the bacteria was carried out to generate a plasmidless strain. Subsequent experiments localized the genes for phenol degradation in plasmid and the genes for mercury resistance and cadmium resistance on the chromosome. Dot hybridization and Southern hybridization under low stringent conditions were performed to identify the DNA homology. These results showed significant homologies between the some sequence of the chromosome of Pseudomonas sp. KM10 and merR of Shigella flexneri R 100, and between the some sequence of the chromosome of Pseudomonas sp. KM10 and cadA of Staphylococcus aureus pI258. The mechanism of cadmium resistance was efflux, similar to that of S. aureus pI258 cadA, and the mechanism of mercury resistance was volatilization, similar to that of S. flexneri R100 mer.

  • PDF

Effect of Cadium Ions on the Activity of Fungal Laccase and Its Decolorization of Dye, RBBR

  • Jarosz-Wilkolazka, A.;Malarczyk, E.;Leonowicz, A.;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.14-22
    • /
    • 2004
  • The effect of cadmium ions on ligninolytic and decolourizing activities in cultures of two white-rot fungi, Cerrena unicolor and Trametes versicolor, were examined. Cadmium was added to the shallow stationary cultures growing on a liquid mineral medium. Both examined strains sorbed Cd ions in the first 24 hr of incubation. An appreciable stimulation of the activity of extracellular laccase (LAC) and inhibition of the extracellular manganese-dependent peroxidase (MnP) were simultaneously observed when 25 mgL-1 and 50 mgL-1 of cadmium ions were added to the cultures. On the other hand, the addition of cadmium ions also resulted in stimulating the decolorization activity of C. unicolor to decolorize Remazol Brilliant Blue R (RBBR) in the cultures, but decreasing it in the culture of T. versicolor, which is compared to the inhibition of MnP activity in this fungus. Our data indicate that the presence of Cd(II) ions can affect the ligninolytic activity of white-rot fungi. It was found that C. unicolor is a strain resistant to the presence of Cd ions in the liquid culture media, and has a potential to use this strain for bioremediation of sites contaminated with both heavy metals and aromatic pollutants.