• 제목/요약/키워드: cadmium metal

검색결과 726건 처리시간 0.027초

고강도 볼트 카드늄 취성파괴 사례연구 (The Case Study on Cadmium Embrittlement Failure of High Strength Bolt)

  • 윤용인
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.769-774
    • /
    • 2010
  • It happened fractures on special bolt which supported main landing gear actuator up-lock rod of aircraft. Cracks were initiated mainly from the center hole and the external thread of the special bolt. To find out failure root causes, metallographic, fractographic analyses as well as test work were carried out. From the fractographic study by SEM work, fracture occurred by a brittle intergranular type failure. The fracture could be occurred primarily by solid-metal-induced embrittlement due to cadmium embrittler penetrated into the flaw existed after machining work for center hole and thread on the bolt during baking treatment processing to eliminate hydrogen. For its successful application, cadmium EP bolts require proper and adequate baking treatment after electroplating, and make no more drilled center hole on the bolt to prevent same failure.

Protective effect of dietary chitosan on cadmium accumulation in rats

  • Kim, Mi Young;Shon, Woo-Jeong;Park, Mi-Na;Lee, Yeon-Sook;Shin, Dong-Mi
    • Nutrition Research and Practice
    • /
    • 제10권1호
    • /
    • pp.19-25
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Cadmium is a toxic metal that is an occupational and environmental concern especially because of its human carcinogenicity; it induces serious adverse effects in various organs and tissues. Even low levels of exposure to cadmium could be harmful owing to its extremely long half-life in the body. Cadmium intoxication may be prevented by the consumption of dietary components that potentially reduce its accumulation in the body. Dietary chitosan is a polysaccharide derived from animal sources; it has been known for its ability to bind to divalent cations including cadmium, in addition to other beneficial effects including hypocholesterolemic and anticancer effects. Therefore, we aimed to investigate the role of dietary chitosan in reducing cadmium accumulation using an in vivo system. MATERIALS/METHODS: Cadmium was administered orally at 2 mg (three times per week) to three groups of Sprague-Dawley rats: control, low-dose, and high-dose (0, 3, and 5%, respectively) chitosan diet groups for eight weeks. Cadmium accumulation, as well as tissue functional and histological changes, was determined. RESULTS: Compared to the control group, rats fed the chitosan diet showed significantly lower levels of cadmium in blood and tissues including the kidneys, liver, and femur. Biochemical analysis of liver function including the determination of aspartate aminotransferase and total bilirubin levels showed that dietary chitosan reduced hepatic tissue damage caused by cadmium intoxication and prevented the associated bone disorder. CONCLUSIONS: These results suggest that dietary chitosan has the potential to reduce cadmium accumulation in the body as well as protect liver function and bone health against cadmium intoxication.

Preparation of L-cysteine Salicylaldehyde Schiff-base Modified Macroporous Polystyrene Resin and Its Application to Determination of Trace Cadmium and Lead in Environmental Water Samples

  • Xie, Fazhi;Zhang, Fengjun;Xuan, Han;Ge, Yejun;Wang, Yin;Li, Guolian;Zhu, Lei;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.472-476
    • /
    • 2014
  • In this work, a new method that utilizes L-cysteine salicylaldehyde Schiff-base modified macroporous polystyrene resin (PS-CSC) as an effective sorbent has been developed for preconcentration of trace cadmium and lead in environmental water samples. The effect of pH, the contact time, the elution conditions, the flow rate, the initial concentration of target metal ions, and the effects of interfering ions on the preconcentration of the analytes were investigated. The maximum adsorption capacity of PS-CSC under optimum conditions for cadmium and lead were found to be 6.03 - 18.17 mg/g and 12.58 - 36.13 mg/g when the initial concentration of metal ions between 5.0 - 90 mg/L. The limits of detection for cadmium and lead were 2.46 ng/L and $0.52{\mu}g/L$, with a preconcentration factor of 200. The developed method has been validated by analyzing certified reference material and successfully applied for the enrichment and determination of trace cadmium and lead from environmental water samples.

중금속류가 취절편의 Amylase 분비에 미치는 영향 (Effect of Heavy Metals on the Secretion of Amylase in Rat Pancreatic Fragments)

  • 김혜영;김원준
    • 대한약리학회지
    • /
    • 제17권2호
    • /
    • pp.31-36
    • /
    • 1981
  • Heavy metals which are present as trace elements in human body have been known to modify various enzymatic reaction. These metals can be essential or non-essential. Zinc, copper and calcium are essential in maintaining some biological processes, whereas non-essential metals such as cadmium, lead and mercury produce accumulatve toxic effect. Cadmium accumulated in pancreas can cause toxicity and damage of pancreatic cells, thereby influencing CHO metabolism. Lead compounds are known to produce toxic effects on the kidney, digestive system and brain fellowed by inhibition of activity of ${\rho}-aminolevulinic$ acid and biosynthesis of hemoproteins and cytochrome. Evidence has been accumulated that zinc not only acts as a cofactor in enzyme reaction but also prevents toxic effect induced by heavy metal such as copper and cadmium. To demonstrate the effect of heavy metals on pancreatic secretion, part of uncinate pancreas was taken and incubated in Krebs-Ringer bicarbonate buffer with heavy metals used. Additional treatment with CCK-OP was performed when needed. After incubation during different period of time, medium was analyzed for amylase activity using Bernfeld's method. The present study was attempted in order to elucidate the effect of several kinds of heavy metal on exocrine pancreatic secretion in vitro. The results obtained are as follows: 1) CCK-OP stimulated significantly amylase release from pancreatic fragments in vitro. 2) CCK-OP response of amylase release from pancreatic fragments was inhibited by treatmant with cadmium, especially high doses of cadmium. 3) CCK-OP response of amylase release from pancreatic fragments was inhibited when pretreated with $10^{-4}M$ copper chloride. 4) Lead chloride at the concentration of $10^{-3}M\;and\;10^{4}M$ stimulated the basal amylase release in vitro but CCK-OP response did not augment by lead chloride. 5) Zine chloride did not affect amylase release from pancreatic fragment in vitro. From the results mentioned above, it is suggested that CCK-OP response was inhibited it the amylase release from pancreatic fragments pretreated with cadmium and copper chloride.

  • PDF

모발중 미량 금속 함량에 관한 조사 연구 (A Study on Trace Metal Levels in Hair)

  • 손부순;홍은주;김윤신
    • 한국산업보건학회지
    • /
    • 제7권2호
    • /
    • pp.233-244
    • /
    • 1997
  • In order to investigate the concentration of trace metals in human hairs from residents living in urban area and rural area, the 120 hair samples of adults were taken from urban areas(industrial area, bus terminal, downtown area) and rural area(Kasan-ri, Yeoju-up, Yeoju-goon) during July - September 1995. Mean concentrations of trace metals including lead and cadmium in human hair were compared by region, sex, presence of smoker, type of water, period of residence. The results were as follows; 1. The average concentrations of lead and cadmium in hairs of urban area are $0.92{\mu}g/g$ ($1.01{\mu}g/g$ industrial area, $1.01{\mu}g/g$ bus terminal, $0.74{\mu}g/g$ downtown area), $0.38{\mu}g/g$ ($0.54{\mu}g/g$ industrial area, $0.49{\mu}g/g$ bus terminal, $0.12{\mu}g/g$ downtown area). The mean concentrations of lead and cadmium in urban area are higher than the corresponding levels in the rural area. 2. Lead concentration for male in the urban and rural area is 0.94 and $0.62{\mu}g/g$, 0.90 and $0.60{\mu}g/g$ for female. But, It does not have any statistical significance. Cadmium concentration for male in the urban and rural area is 0.38 and $0.12{\mu}g/g$, 0.38 and $0.11{\mu}g/g$ for female. But It does not have any statistical significance. 3. Mean concentrations of lead and cadmium in smokers shows higher than non-smokers. It showed that the longer period of residence in urban area, the higher concentrations of three metals.

  • PDF

카드뮴내성(耐性) Staphylococcus aureus내(內) 카드뮴분포(分布) (Distribution of Cadmium in a Strain of Staphylococcus aureus Resistant Against the Metal)

  • 현은민;박찬성;최경호
    • 한국식품영양과학회지
    • /
    • 제10권1호
    • /
    • pp.103-106
    • /
    • 1981
  • 전보(前報)에서 분획(分劃)한 카드뮴내성(耐性) S. aureus의 각(各) 획분중(劃分中)에 함유(含有)된 카드뮴을 원자흡광법(原子吸光法)으로 분석(分析)하여 다음과 같은 결과(結果)를 얻었다. 1. 균체(菌體) g 당(當) $690.9{\mu}g$의 카드뮴이 함유(含有)되었다. 2. 동(同) 카드뮴 중 39.9%에 상당(相當)하는 량(量)은 TCA로 용이(容易)하게 추출(抽出)되었으나 52.2%의 카드뮴은 TCA 추출(抽出) 후(後) Ethanol-Ether, Perchloric acid, Ammonia수(水)로 순차적(順次的)으로 추출(抽出)하여 추출(抽出)되지 아니하고 잔사중(殘渣中)에 잔유(殘有)하였다. 3. 균체부위별(菌體部位別)로는 원형질획분(原形質劃分)에 26.8%, 원형질막획분(原形質膜劃分)에 59.1%, 세포벽획분(細胞壁劃分)에 14.1%가 함유(含有)되었고, 4. 세포벽(細胞壁에) 함유(含有)된 카드뮴 중 90% 이상(以上)이 Lipopolyeaccharide 획분(劃分)에서 검출(檢出)되었다.

  • PDF

유기 게르마늄의 투여가 카드뮴 및 수은에 중독된 흰쥐 간장 및 신장조직의 metallothionein 형성에 미치는 영향 (Effects of Organic Germanium on Metallothionein Induction in Liver and Kidney of Cadmium and Mercury Intoxicated Rats)

  • 이효민;정용
    • 약학회지
    • /
    • 제35권2호
    • /
    • pp.99-110
    • /
    • 1991
  • This study was initiated to investigate the effects of organic germanium on cadmium and mercury intoxication. The effect was determined by the metallothionein induction in liver and kidney. Male rats (Sprague-Dawley) were treated with CdCI$_{2}$ (2mg/kg), HgCI$_{2}$ (1 mg/kg) and organic germanium (GE-132) (100 mg/kg) in single and in combination via intraperitoneal injection or intragastric administration every other days for 17 days. Experimental animals were sacrificed after 7, 12 and 17 days treatment. The serum transaminase activities (SGOT, SGPT), concentration of metal and metallothionein, metal-binding capacity of metallothionein in liver and kidney were determined and pathomorphological observations were undertaken. The combined treatment of GE-132 and CdCI$_{2}$ significantly decreased the increment of serum transaminase activities in rats treated with CdCI$_{2}$ only, but the combined treatment of GE-132 and HgCI$_{2}$ did not affect to activities of transaminases induced by mercury only. The concentration of metals (Cd and Hg) except Ge in the liver and kidney of rats increased with the time of treatment. Mercury concentration in kidney of rat treated with HgCI$_{2}$ only was significantly higher than the combined treatment of GE-132 and HgCI$_{2}$. The combined treatment of GE-132 and CdCI$_{2}$ significantly increased the concentration of metallothionein in liver compared to the CdCI$_{2}$ only, although the concentration of cadmium in liver were not significantly different between two groups. This indicates that GE-132 decreased toxicity of cadmium in liver by promoting metallothionein induction. There were no significant differences in metallothionein concentration in liver and kidney of rats between the combined treatment of GE-132 and HgCI$_{2}$ and HgCI$_{2}$ only. Metal-binding capacity of metallothionein varied with each time intervals in liver and kidney of metals treated rats except the liver of the combined treatment of GE-132 and CdCI$_{2}$. This finding explains the concentration of metallothionein in liver keeps abreast with the concention of metal. Furthermore, the combined treatment of GE-132and CdCl$_{2}$ revealed pathologically less changes in liver tissue than CdCl$_{2}$ only; the damages of liver cell, such as lobular necrosis and portal inflammation, were relieved and appeared more later. From the above results, organic germanium is considered to have some beneficial effect on the protection of liver from the cadmium intoxication.

  • PDF

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.

지하수 중 카드뮴 저감 방안에 대한 고찰 (Review on the Remediation Method for Groundwater Contaminated with Cadmium)

  • 권종범;박선화;김덕현;윤종현;최현희;김문수;김영;신선경;김현구
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권4호
    • /
    • pp.22-36
    • /
    • 2022
  • Cadmium is a class 1 carcinogen classified by the International Agency for Research on Cancer (IARC) and has a high potential for leaching into groundwater. Therefore, it is necessary to address cadmium contamination by employing adequate treatment methodologies. Although various methods have been suggested to reduce cadmium in groundwater, their applications often suffer from various limitation arising from heterogeneous field conditions and technical difficulties. In this work, several in-situ technologies to treat cadmium contaminated groundwater were reviewed and discussed by separately addressing physicochemical, chemical and biological methods. In particular, the optimum cadmium remediation strategies that involve physical removal of source area → physicochemical and chemical remediation → biological remediation were proposed by considering reduction efficiency, adsorption rate, economic feasibility and ease of field application in groundwater.

Hepa1c1c7 세포에서 카드뮴에 의한 세포사멸 신호전달체계에 관한 연구 (Apoptotic Signaling Pathway by Cadmium in Hepalclc7 cells)

  • 오경재;염정호
    • Toxicological Research
    • /
    • 제17권3호
    • /
    • pp.215-223
    • /
    • 2001
  • 카드뮴의 주요한 표적장기이며 카드뮴이 만성 및 급성 폭로시 축적되는 가장 중요한 장기인 간의 세포독성을 Hepalclc7세포에서 caspases및 Bax단백질의 활성과 발현 그리고 미토콘드리아 세포막 전위 변화(MPT) 등을 조사하여 다음과 같은 결과를 얻었다. 1. 카드뮴은 농도의존적으로 간세포인 Hepalclc7 세포의 생존율을 감소시켰다. 2. 카드뮴을 농도별로 처리하였을 때 100 M 이상의 농도에서 세포사멸의 특징중의 하나인 DNA분절현상을 확인하였다. 3. 카드뮴 처리 후 caspase-3, caspase-8, caspase-9 의 활성변화를 조사한 결과 caspase-3,-9 pretease 활성이 시간이 경과함에 따라 증가하였다. 4. 카드뮴 처리 후 cytochrome c가 세포질내로 방출되었고 이는 caspase-9 proteas의 활성화를 유도하였다. 5. 카드뮴 처리 후 Bax가 세포질에서 미토콘드리아로 이동하여 cytochrome c의 세포질내로의 방출에 관여하였다. 6. 카드뮴 처리시 미토콘드리아 세포막 전위차의 감소를 JC-1 형광염색을 통하여 확인하였다. 이상의 결과는 카드뮴에 의한 Hepalclc7 세포사멸의 신호전달기전은 세포질내에 있는 Bax가 미토콘드리아로 이동, cytochrome c의 세포질내로의 방출, 그리고 caspase-3, 9 pretease 활성화를 의해서 매개되는 것으로 판단된다. 또한 Bax 단백질의 발현변화가 미토콘드리아의 기능변화에 기여하였으리라 사료된다.

  • PDF