• Title/Summary/Keyword: cadmium metal

Search Result 726, Processing Time 0.029 seconds

The response of plants growing in a landfill in the Philippines towards cadmium and chromium and its implications for future remediation of metal-contaminated soils

  • Nazareno, Patricia Anne G.;Buot, Inocencio E. Jr.
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • During several visits to the Cebu City landfill in the Philippines, plants were observed growing within the area, including on top of the garbage piles. Studying the response of these plants is important in assessing which can be used in remediating metal contaminated soils. This study aimed to determine whether the plants in the Cebu City landfill excluded or accumulated cadmium (Cd) and chromium (Cr) in the plant tissues. The floristic composition of the landfill was analyzed prior to the sample collection. The samples were acid-digested before the desired elements were measured using atomic absorption spectrophotometry (AAS). The Cd and Cr concentrations in the plant root-zone soil were also measured using AAS. The results indicated that the landfill substrate was generally acidic based on the results of the pH measurement. Of the 32 plant species sampled, Cyperus odoratus showed potential for Cd uptake and internal transfer; Cenchrus echinatus, Vernonia cinerea and Terminalia catappa for Cr uptake, and Cynodon dactylon for Cr internal transfer. The plants in the landfill differed in their response towards the heavy metals. To confirm the behavior of C. odoratus towards Cd, and C. echinatus, C. dactylon, V. cinerea, and T. catappa towards Cr, controlled experiments are recommended, as the plant samples analyzed were collected from the field.

Heavy Metal Characteristics of Fish in Watersheds of the Upper Region of the Nakdong River (낙동강 상류 유역별 서식 어류의 중금속 특성)

  • Kwon, Hee Won;Kim, Young Hun;Kim, Jeong Jin
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.103-116
    • /
    • 2022
  • Heavy metal contaminations were investigated in fishes inhabiting the basins of Andong, Imha and Yeongju dam basins along the upper stream of the Nakdong river. The characteristics of heavy metals contamination in fish were investigated based on sampling sites located in the Andong dam basin. The muscle tissue was analyzed for 267 objects of 26 species from the Andong dam, 50 objects of 17 species from Imha dam, 38 objects of 9 species fromYoungju dam basin.The type and amount of heavy metals concentrated in the body of the fishes was found to be species-dependent. The heavy metal species which contamination increase through the Seokpo smelter are chromium, zinc, cadmium, and lead, and these are very likely the influence of the smelter. The concentration of eight heavy metals in fish from the Andong dam basin was higher than that in fish from the Imha and Youngju dam basins; the values for zinc, arsenic, and cadmium were significantly higher. However, mercury and lead exhibited high values in the Imha and Yeongju dam basins, respectively.

Metallothionein gene(pPMT)와 Manganese Transport Gene mntA(pZH3-5)를 포함한 재조합 Escherichia coli를 이용하여 수용액상에서의 Cadmium의 선택적 제거

  • Kim, Se-Gwon;Baek, Seung-Hak;Kim, Eun-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.426-429
    • /
    • 2000
  • Recombinant E. coli JM109(pZH3-5/pMT) harboring manganese transport gene(mntA) and metal sequestering protein, metallothionein(MT), was cultivated to accumulate cadmium in aqueous phase. Bioaccumulation followed Michaelis-Menten type kinetics. Equilibrium isotherm showed Langmuir type isotherm. The optimum pH for $Cd^{2+}$ uptake was 7-7.5.

  • PDF

Survey on Contents of Heavy Metals in Shellfishes (패류중의 중금속 함량조사)

  • 한천길;김진곤;김명희
    • Environmental Analysis Health and Toxicology
    • /
    • v.4 no.1_2
    • /
    • pp.47-53
    • /
    • 1989
  • This survey was performed to find out the heavy metal concentrations in shellfishes. Experimental subjects were 60 cases in 10 kinds of shellfishes purchased in markets in july, august, 1987 and february, 1988. Contents of lead, cadmium, zinc, copper and mangangese were determined by atomic absorption spectrophotometer and mercury contents by mercury analyzer. The results were as follows: The range of mercury contents in shellfishes was from ND to 0.22 ppm, cadmium from 0.22 to 2.46 ppm, lead from 0.09 to 4.90 ppm, copper from 0.62 to 12.45 ppm, manganese from 0.09 to 13.8 ppm and zinc from 4.01 to 129.96 ppm.

  • PDF

Determination of Optimal Toxic Concentration and Accumulation of Cadmium in Broiler Chicks

  • Subhan, Fazli;Khan, Ayaz;Wahid, Fazli;Shehzad, Adeeb;Jan, Amin Ullah
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.143-147
    • /
    • 2011
  • Cadmium is considered one of the most toxic, non biodegradable heavy metal for the human and animals. The purpose of the present study was to investigate the changes in biochemical parameters of blood and accumulation of cadmium in various tissue caused by various levels of dietary cadmium chloride ($CdCl_2$) in broiler chicks. $CdCl_2$ was administered through drinking water to broiler chicks. In spectral analysis, $CdCl_2$ treatment caused a significant increase in Glutamate pyruvate transaminase (GPT), creatinine and uric acid levels in all treated groups. Intriguingly, the GPT, creatinine, and uric acid levels were significantly higher at 75 mg/kg as compared to the groups treated with high doses (100, 125 and 150 mg/kg) of $CdCl_2$. Atomic Absorption Spectrophotometer (AAS) was used for the determination of Cd accumulation in kidney, liver and Breast muscles. AAS analysis revealed that Cd accumulation is increased in breast muscles as compared to liver and kidney at higher doses of Cd than 75 mg/kg.

Expression of Arabidopsis Phytochelatin Synthase 2 Is Too Low to Complement an AtPCS1-defective Cad1-3 Mutant

  • Lee, Sangman;Kang, Beom Sik
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2005
  • Phytochelatins play an important role in heavy metal detoxification in plants as well as in other organisms. The Arabidopsis thaliana mutant cad1-3 does not produce detectable levels of phytochelatins in response to cadmium stress. The hypersensitivity of cad1-3 to cadmium stress is attributed to a mutation in the phytochelatin synthase 1 (AtPCS1) gene. However, A. thaliana also contains a functional phytochelatin synthase 2 (AtPCS2). In this study, we investigated why the cad1-3 mutant is hypersensitive to cadmium stress despite the presence of AtPCS2. Northern and Western blot analyses showed that expression of AtPCS2 is weak compared to AtPCS1 in both roots and shoots of transgenic Arabidopsis. The lower level of AtPCS2 expression was confirmed by RT-PCR analysis of wild type Arabidopsis. Moreover, no tissue-specific expression of AtPCS2 was observed. Even when AtPCS2 was under the control of the AtPCS1 promoter or of the cauliflower mosaic virus 35S promoter (CaMV 35S) it was not capable of fully complementing the cad1-3 mutant for cadmium resistance.

Uptake of Heavy Metal Ions by Water Dropwort (Oenanthe stolonifera DC.) and Identification of Its Heavy Metal-Binding Protein (미나리의 중금속 흡수량 측정 및 중금속 결합단백질의 동정)

  • Park, Young-Il;Kim, Hee-Guen;Kim, Yoo-Young;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.494-500
    • /
    • 1996
  • Uptake of hen metal ions by water dropwort (Oenanthe stolonifera DC.) and its cadmium-binding protein were studied to probe for good method to remove heavy metal contaminants from environments. The plant was cultured in the culture medium (pH 7.0) containing the various concentrations of $Cd^{2+}$, $Cr^{3+}$ or $Pb^{2+}$, for 3 and 7 days. The residual heavy metals deposited in roots linearly increased as the metal ions concentration increased up to 17 ppm for $Cd^{2+}$, 20 ppm for $Cr^{3+}$ and 50 ppm for $Pb^{2+}$. Above these concentrations, the plant growth was inhibited and the uptake rates of the metal ions decreased. The heavy metals absorbed by the plant were mostly deposited in roots. In particular, the residual concentration of lead in roots was about four times higher than those of cadmium and chromium. When cultured in the medium containing 20 ppm of each metal ion, 80% of cadmium, 90% of cromium and 96% of lead were deposited in roots out of the total residual metal ions in the plant. These values correspond to 6.1 mg of cadmium, 5.2 mg of chromium and 23.6 mg of lead per one gram of roots tissue on a dry weight basis. A cadmium-binding protein was partially purified by extraction, gel filtration and DEAE-Cellulose chromatography from water dropworts that was grown in the medium containing 20 ppm $Cd^{2+}$. The purified protein was a single band on SDS- and non-denaturing- polyacrylamide gel electrophoresis. Its molecular mass was estimated to be ca. 5,000 dalton by gel filteration. Analysis of amino acid composition of the protein indicated that it had a typical amino acid composition of heavy metal-binding protein in that it contained 27% of acidic amino acids and 9.9% of cysteine. However, it is likely that the protein is a new plant metal-binding protein, since its amino acid composition is somewhat different from those of phytochelatins that have been known so far.

  • PDF

A Study on the Heavy Metal Tolerance in Several Herbaceous Plants (수종 초본식물의 중금속 내성에 대한 연구)

  • Cho, Do-Soon;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.147-156
    • /
    • 1995
  • Restoration of ecosystems degraded by heavy metal pollution can be accomplished by soil amendment and selection and utilization of plants tolerant to heavy metals. Two former zinc mine sites, Sambo Mine in Hwasung, Kyonggi-do and the Second Yonhwa Mine in Samchuk, Kangwon-do, were selected for collection of plant samples and for determination of heavy metal tolerant species. Dominant species on mine waste deposits in Hwasung site were Panicum bisulcatum and Echinoch/oa crus-galli, while those in Samchuk site were Aster yomena, Setaria viridis, Artemisia lavandulaefolia and Oenothera odorata. Mean contents of zinc, lead and cadmium in Hwasung soil were 103, 117 and 1 ppm, respectively, while those in Samchuk soil were 23, 6 and 4 ppm, respectively, Zinc contents were higher in Echinochloa crus-galli from Hwasung and in Artemisia lavandulaefolia from Samchuk, while lead contents were higher in Panicum bisulcatum and Echinochloa crus-galli from Hwasung and Lactuca sonchiJolia and Pinus densiJolia from Samchuk. Plant species with higher cadmium contents were Panicum bisulcatum and Lactuca sonchiJolia. Comparison of metal contents between roots and shoots showed that Echinochloa crus-galli was a zinc accumulator, while Panicum bisulcatum, Persicaria hydroPiPer, Pinus densiJlora and Lactuca sonchiJolia were zinc excluders. In addition, Panicum bisulcatum and Persicaria hydroPiPer were proved to be lead excluders. When both heavy metal contents in plant tissues and biomass of individual plants are considered, it can be concluded that Echinochloa crus-galli and Panicum bisulcatum from Hwasung and Artemisia lavandulaefolia and Aster yomena are heavy metal absorbing plants. The effect of heavy metals on seed germination showed that Artemisia princeps var. orientalis had higher germination rates, but no significant difference in concomitant decrease of germination rates among the species investigated were found by increasing heavy metal contents.

  • PDF

Treatment of Heavy Metal Wastewater by Pricipitation and Adsorption (침전법과 흡착법을 이용한 중금속 처리)

  • 심순보;이요상
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.325-328
    • /
    • 1992
  • The purpose of this research is to develop the technique of heavy metal removal from wastewater. The research is divided into two parts, one part uses complex precipitation and the other uses adsorption. In the first part of the study, humic acid is used as the complex agent, humic acid is a polyelectrolyte with a high complexation affinity. Lead, copper, zinc and cadmium were studied for their complex precipitation efficiencies. In the batch studies, humic acid was effective in removing 100% of the lead and 48.2% of the copper respectively from wastewater without anytreatment. The efficiency of cadmium and zinc, however, was very low. In the second part of the study, wastewater is introduced at the top of a silicagel adsorption column and then bottom effluent concentration is analyzed. The results of the analysis are used to draw a breakthrough curve.

  • PDF

METALLOTHIONEIN GENE EXPRESSION BY CADMIUM IN CRUCIAN CARP (CARASSIUS AURATUS)

  • Nam, Seong-Sook;Heekyung Bae;Kim, Eunkyoung;Moon, Chang-Kiu;Jeon, Seong-Hwan;Na, Jin-Gyun;Park, Kwangsik
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.127-127
    • /
    • 2002
  • Methallothioneins(MTs) are low-molecular-mass cysteine-rich metal-binding proteins with high affinity for heavy metal ions, found in a large variety of organisms. Although the biological functions of MTS have not been fully elucidated, they are thought to play an important role in detoxification of toxic elements such as cadmium and mercury.(omitted)

  • PDF