• Title/Summary/Keyword: cadmium metabolism

Search Result 42, Processing Time 0.019 seconds

Geochemical Dispersion and Contamination Characteristics of Heavy Metals in Soils and Leaves of Ginkgo biloba in Seoul Area (서울지역 가로수 토양과 은행나무 잎 중의 중금속 원소들의 지구화학적 분산과 오염특성)

  • Choo Mi-Kyung;Kim Kyu-Han;Lee Jin-Soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.221-236
    • /
    • 2005
  • In order to investigate the contamination levels and dispersion patterns of heavy metals such as Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn by urbanization, soils beneath roadside-trees and leaves of Ginkgo biloba were collected from Seoul area during October to November in 2001. All tree leaves were grouped into washed and unwashed ones. The pH of most soil ranges from 6 to 9 indicating a weak acidic and alkaline. The element couples of Cd-Co, Cr-Ni and Zn-Cu-Pb have good correlation in soils, and contamination sources of Cd-Co, Cr-Ni and Zn-Cu-Pb could be similar. High correlation coefficients among Pb, Cu and Zn in G. biloba indicates that these elements show the similar behavior during the metabolism processes. From the results of pollution index calculation for soils, industrialized and heavy traffic area were severly polluted by heavy metals such as Cd, Cu, Pb and Zn. By the discriminant analysis, industrialized and heavy traffic areas are enriched in the order of Ni> Cr> Pb. Cadmium is useful to discriminate between industrialized and heavy traffic areas, Co and Pb are highly enhanced in heavy traffic area.

The Effects of Isopropyl 2-(1,3-dithioetane-2-ylidene)-2-[N-(4-methyl-thiazol-2-yl)carbamoyl]acetate (YH439) on Potentiated Carbon Tetrachloride Hepatotoxicity (상승적 화학적 간독성에 미치는 YH439의 영향)

  • Kim, Sang-Geon;Cho, Joo-Youn
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.407-416
    • /
    • 1996
  • The reactive intermediates formed during the metabolism of therapeutic agents, toxicants and carcinogens by cytochromes P450 are frequently capable of covalently binding to tissue macromolecules and causing tissue damage. It has been shown that YH439, a congener of malotilate, is effective in suppressing hepatic P450 2E1 expression. The present study was designed to further establish the mechanistic basis of YH439 protection against toxicant by assessing its effects against chemical-mediated potentiated hepatotoxicity. Retinoyl palmitate (Vit-A) pretreatment of rats for 7 days substantially enhanced carbon tetrachloride hepatotoxicity, as supported by an ${\sim}5-fold$ increase in serum alanine aminotransferase (ALT) activity, as compared to $CCl_4$ treatment alone. The elevation of ALT activity due to Vit-A was completely blocked by the treatment of $GdCl_3$ a selective inhibitor of Kupffer cell activity. Concomitant pretreatment of rats with both YH439 and Vit-A resulted in a 94% decrease in Vit-A-potentiated $CCl_4$ hepatotoxicity. YH439 was also effective against propyl sulfide-potentiated $CCl_4-induced$ hepatotoxicity. Whereas propyl sulfide (50 mg/kg, 7d) enhanced $CCl_4-induced$ hepatotoxicity by >5-fold, relative to $CCl_4$ treatment alone, concomitant treatment of animals with both propyl sulfide and YH439 at the doses of 100 and 200 mg/kg prevented propyl sulfide-potentiated $CCl_4$ hepatotoxicity by 35% and 90%, respectively. Allyl sulfide, a suppressant of hepatic P450 2E1 expression, completely blocked the propyl sulfide-enhanced hepatotoxicity, indicating that propyl sulfide potentiation of $CCl_4$ hepatotoxicity was highly associated with the expression of P450 2E1 and that YH439 blocked the propyl sulfide-enhanced hepatotoxicity through modulation of P450 2E1 levels. Propyl sulfide- and $CCl_4-induced$ stimulation of lipid peroxidation was also suppressed by YH439 in a dose-related manner, as supported by decreases in malonedialdehyde production. The role of P450 2E1 induction in the potentiation of $CCl_4$ toxicity and the effects of YH439 were further evaluated using pyridine as a P450 2E1 inducer. Pyridine pretreatment substantially enhanced the $CCl_4$ hepatotoicity by 23-fold, relative to $CCl_4$ alone. YH439, however, failed to reduce the pyridine-potentiated toxicity, suggesting that the other form(s) of cytochroms P450 inducible by pyridine, but not suppressible by YH439 treatment, may play a role in potentiating $CCl_4-induced$ hepatotoxicity. YH439 was capable of blocking cadmium chloride-induced liver toxicity in mice. These results demonstrated that YH439 efficiently blocks Vit-A-enhanced hepatotoxiciy through Kupffer cell inactivation and that the suppression of P450 2E1 expression by YH439 is highly associated with blocking of propyl sulfide-mediated hepatotoxicity.

  • PDF