• 제목/요약/키워드: cable vibration control

검색결과 81건 처리시간 0.026초

통계적 에너지 해석 기법에 의한 공조용 로타리 압축기의 소음 진동 전달 경로 해석 (A Study on the Noise and Vibration Transmission Path of Rolling Pistion Type Rotary Compressor Using SEA)

  • Hwang, Seon-Woong;Jeong, Hyeon-Chul;Ahn, Byung-Ha;Jeong, Weui-bong;Kim, Kyu-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.385.2-385
    • /
    • 2002
  • Hermetic rotary compressor is one of the most important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of the system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration, it is necessary to identify sources of noise and vibration and effectively control them. (omitted)

  • PDF

Human induced vibration vs. cable-stay footbridge deterioration

  • Casciati, S.
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.17-29
    • /
    • 2016
  • In this paper, the possibility of using human induced loading (HIL) to detect a decrease of tension in the cable-stays of an existing footbridge is investigated. First, a reliable finite elements model of an existing footbridge is developed by calibration with experimental data. Next, estimates of the tension in the cables are derived and their dependency on the modal features of the deck is investigated. The modelling of the HIL is briefly discussed and used to perform the nonlinear, large strain, dynamic finite elements analyses. The results of these analyses are assessed with focus on characterizing the time histories of the tension in the cables under pedestrian crossing and their effects on the deck response for different initial conditions. Finally, the control perspective is introduced in view of further research.

오버헤드셔틀시스템의 동특성해석 및 잔류진동제어 (Dynamics Analysis and Residual Vibration Control of an Overhead Shuttle System)

  • 박명욱;김경한;;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.445-452
    • /
    • 2016
  • This paper discusses the dynamics and control problem of an overhead shuttle system (OSS), which is a critical part of the automated container terminal at a port. The main purpose of the OSS is efficient automated transport function of containers, which also requires high precision and safety. A major difference between the OSS and the conventional container crane is the configuration of the cables for hoisting the spreader. A mathematical model of the OSS is developed here for the first time, which results in an eight-pole system. Also, open loop control methods (trapezoidal and notch-type velocity profiles) are investigated so that the command input to the overhead shuttle produces the minimum possible sway of the payload. Simulation results show that the vibration suppression capability of the OSS is superior to the conventional overhead container crane, which is partially due to the cable configuration.

Conceptual design of light bascule bridge

  • Xu, Weiwei;Ding, Hanshan;Lu, Zhitao
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.381-390
    • /
    • 2008
  • This paper proposed a conceptual design of bascule bridge, which is a new kind of movable bridge with an aim of reducing the weight of superstructure. Compared with the traditional bascule bridge, the light bascule bridge chooses cable-stayed bridge with inclined pylon as its superstructure; therefore, the functions of balance-weight and structure will fuse into one. Otherwise, it adopts moving counterweight to adjust its center of gravity (CG) to open or close the bridge. In order to lighten the superstructure, it uses contact springs to auxiliary retract, and intelligent prestressing system (IPS) to control the main girder's deformation. Simultaneously the vibration control scheme of structure is discussed. Starting from establishing the mechanical model of bridge, this article tries to analyze the conditions that the design parameters of structure and attachments should satisfy to. After the design procedure was presented, an example was also adopted to explain the primary design process of this kind bridge.

Practical countermeasures for the aerodynamic performance of long-span cable-stayed bridges with open decks

  • Zhou, Rui;Yang, Yongxin;Ge, Yaojun;Mendis, Priyan;Mohotti, Damith
    • Wind and Structures
    • /
    • 제21권2호
    • /
    • pp.223-239
    • /
    • 2015
  • Open decks are a widely used deck configuration in long-span cable-stayed bridges; however, incorporating aerodynamic countermeasures are advisable to achieve better aerodynamic performance than a bluff body deck alone. A sectional model of an open deck cable-stayed bridge with a main span of 400 m was selected to conduct a series of wind tunnel tests. The influences of five practical aerodynamic countermeasures on flutter and vortex-induced vibration (VIV) performance were investigated and are presented in this paper. The results show that an aerodynamic shape selection procedure can be used to evaluate the flutter stability of decks with respect to different terrain types and structural parameters. In addition, the VIV performance of $\prod$-shaped girders for driving comfortableness and safety requirements were evaluated. Among these aerodynamic countermeasures, apron boards and wind fairings can improve the aerodynamic performance to some extent, while horizontal guide plates with 5% of the total deck width show a significant influence on the flutter stability and VIV. A wind fairing with an angle of $55^{\circ}C$ showed the best overall control effect but led to more lock-in regions of VIV. The combination of vertical stabilisers and airflow-depressing boards was found to be superior to other countermeasures and effectively boosted aerodynamic performance; specifically, vertical stabilisers significantly contribute to improving flutter stability and suppressing vertical VIV, while airflow-depressing boards are helpful in reducing torsional VIV.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Ambient Vibration measurements and finite element modelling for the Hong Kong Ting Kau Bridge

  • Au, F.T.K.;Tham, L.G.;Lee, P.K.K.;Su, C.;Han, D.J.;Yan, Q.S.;Wong, K.Y.
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.115-134
    • /
    • 2003
  • The Ting Kau Bridge in Hong Kong is a cable-stayed bridge comprising two main spans and two side spans. The bridge deck is supported by three towers, an end pier and an abutment. Each of the three towers consists of a single reinforced concrete mast which reduces its section in steps, and it is strengthened by transverse cables and struts in the transverse vertical plane. The bridge deck is supported by four inclined planes of cables emanating from anchorages at the tower tops. In view of the threat from typhoons, the dynamic behaviour of long-span cable-supported bridges in the region is always an important consideration in their design. This paper is devoted to the ambient vibration measurements of the bridge for evaluation of dynamic characteristics including the natural frequencies and mode shapes. It also describes the modelling of the bridge. A few finite element models are developed and calibrated to match with the field data and the results of subsequent structural health monitoring of the bridge.

진자슬래브에 의한 진동제어시스템의 적용성 평가 (Study on the Application of Tuned Pendulum Slab Damper system (TPSD) to Building structure)

  • 김양중;서근배
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.181-184
    • /
    • 2012
  • The Tuned Pendulum Slab Damper(TPSD)system is mainly composed of suspended pendulum slab which was hanging with cable wire from the top floor of building without any extra loads structurally, and can be helpful to reduce vibration with effect of tuned mass damper function by the principle of pendulum movement. The experiment was performed with miniatures of the 30stories of steel structure building by the forced vibration test using shaking table, and the result was reduced about 42% of vibration. The purpose of this study was to make analysis of application of the TPSD system to new building and exist building against strong wind or seismic wave. The result of this study was that the TPSD system shall be satisfactory in field of execution, process control, safety and economical efficiency with saving up to 70% of construction cost.

  • PDF

EPB(Electric Parking Brake) 작동음질 개선에 관한 연구 (Sound Quality Improvement of Electric Parking Brake System)

  • 박동철;홍석관;조기창
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.461-466
    • /
    • 2012
  • Customers want to have more convenient and comfortable vehicle. Motor-on-caliper EPB(Electrical Parking Brake) System is one of the new systems for customer's convenience. It is applied for Midsize vehicle for reducing weight/price compared to cable puller type EPB. In this paper we studied sound quality improvement of motor-on-caliper EPB system. We developed the sound quality index and suggested the interior sound quality target value. To meet the target value cascading target was also suggested. EPB motor vibration level & sound radiation level, vibro-acoustic transfer function level from EPB to interior was defined. To find out effective way of sound quality improvement and find cascading target, TPA(Transfer Path Analysis) was carried out.

  • PDF

사장교를 위한 LRB-기반 복합 기초격리 시스템 (LRB-based hybrid base isolation systems for cable-stayed bridges)

  • 정형조;박규식;;이인원
    • 한국지진공학회논문집
    • /
    • 제8권3호
    • /
    • pp.63-76
    • /
    • 2004
  • 사장교에 발생하는 지진에 의한 진동을 감소시키기 위해 추가적인 능동/반능동 제어장치를 부착한 LRB-기반 복합 기초격리 시스템에 대한 논문이다. 복합 기초격리 시스템은 제어장치가 다중으로 작동하기 때문에 LRB가 설치된 교량 시스템과 같은 수동형 기초격리 시스템에 비해 제어 성능이 뛰어나다. 본 논문에서는, LQG 알고리듬에 의해 제어되는 능동형 유압식 가력기와 clipped 최적제어에 의해 제어되는 반능동형 자기유변 유체 (MR) 감쇠기를 추가적인 제어장치로 고려하여 추가적인 응답 감소 효과를 검토하였다. 이를 위해, 미국토목학회의 1단계 벤치마크 사장교에 LRB를 설치한 교량을 고려하였다. 수치해석 결과를 통해, 모든 LRB-기반 복합 기초격리시스템이 구조물의 응답을 효과적으로 감소시킴을 확인하였다. 또한, MR 감쇠기를 채택한 복합 기초격리 시스템은 구조물 강성의 불확실성에 대해 강인성을 보였지만 유압식 가력기를 채택한 경우에는 강인성이 부족함을 알 수 있었다. 따라서, 반능동형 추가 제어장치를 채택한 복합 기초격리 시스템의 대형 토목구조물에 대한 적용가능성이 제어 성능 및 강인성 면에서 분명하게 검증되었다.