• 제목/요약/키워드: cable vibration

검색결과 395건 처리시간 0.022초

Pseudospectral를 이용한 케이블 권선형 배전용 변압기 권선의 진동모드 해석 (A vibration Analysis of Cable-type Power Transformer Winding by the Pseudospectral Method)

  • 정현구;우성현;신판석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.83-85
    • /
    • 2008
  • 본 논문은 변압기의 대부분 고장원인이 되는 권선 간의 단자 시 발생하는 진동을 수치적으로 계산하고 전자력 계산을 위한 방법으로 Pseudospectral Method을 적용하여 단락권선사이의 강제진동해석을 수행하였다. 나선형권선의 방정식은 Chebyshev다항식 시리즈의 확장과 Gauss-Lobatto collocation 과정을 수행되어진다. 알고리즘 검증을 위하여 22.9kV/220V, 1000kVA 용량의 케이블 타입의 변압기의 FEM 시물레이션 결과와 이론적 수치적계산과 함께 비교하였다.

  • PDF

Performance Evaluation of Hinge Driving Separation Nut-type Holding and Releasing Mechanism Triggered by Nichrome Burn Wire

  • LEE, Myeong-Jae;LEE, Yong-Keun;OH, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.602-613
    • /
    • 2015
  • As one of the mission payloads to be verified through the cube satellite mission of Cube Laboratory for Space Technology Experimental Project (STEP Cube Lab), we developed a hinge driving separation nut-type holding and releasing mechanism. The mechanism offers advantages, such as a large holding capacity and negligible induced shock, although its activation principle is based on a nylon cable cutting mechanism triggered by a nichrome burn wire generally used for cube satellite applications for the purpose of holding and releasing onboard appendages owing to its simplicity and low cost. The basic characteristics of the mechanism have been measured through a release function test, static load test under qualification temperature limits, and shock measurement test. In addition, the structural safety and operational functionality of the mechanism module under launch and on-orbit environments have been successfully demonstrated through a vibration test and thermal vacuum test.

장대 사장교 콘크리트 주탑의 풍동실험 연구 (Wind Tunnel Testing of a Concrete Pylon for Long Span Cable-Stayed Bridge)

  • 윤태양
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.239-248
    • /
    • 1994
  • Wind tunnel tests and analyses of the response of the concrete pylon for the Seo Han Grand Bridge were conducted using aeroelastic model technique. A 1/250 scale aeroelastic model was used to measure the responses of the pylon at the several critical locations and to find any possible vibrational behavior. In order to confirm the model design and fabrication, natural frequencies and mode shapes measured from the model were compared with those from the calculation. Tests were conducted under the various angles ranging from $0^{\circ}$ to $90^{\circ}$ to find the critical angle of the wind. In order to evaluate the sensitivity of the response to changes in structural damping, a series of tests were conducted with two different values of structural damping such as 0.2% and 1.0% of critical. Additional tests were also conducted considering construction sequence.

  • PDF

도심지 무인통신구 건설을 위한 도심형 디샌더의 진동특성과 최적화에 관한 연구 (A study on vibration characteristics and optimum design of a desander developed for constructing nonmansize cable tunnel in downtown)

  • 김정근;백송훈
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2005년도 하계학술대회
    • /
    • pp.187-191
    • /
    • 2005
  • 도시를 중심으로 지속적으로 발생하고 있는 초고속 네트워크서비스의 안정성을 확보하기 위해 KT는 경제적이고 안정된 구조의 직경 1,000mm 이하의 무인통신구를 건설하고 있다. 도심지에서 무인통신구 공사 허가 및 민원을 유발하는 요인으로 공사시 발생하는 이수 처리장치인 디샌더(Desander)의 소음과 진동이 있다. 소음과 진동은 불쾌감을 유발하고 인근 건물에 영향을 줄 수 있기 때문에 지속적인 관리가 필요하다. 본 연구는 소음과 진동의 주 원인인 디샌더가 발생하는 진동 특성을 모델링하고 설계인자를 이용한 최적화를 통해 진동전달 량의 최소화에 관한 것으로 이를 통해 디샌더의 설계단계에서부터 민원 유발원인인 진동과 소음을 최소화 하고자 한다.

  • PDF

Maximum Energy Dissipation Algorithm을 이용한 벤치마크 사장교의 제어 (Vibration Control of a Benchmark Cable-Stayed Bridge using Maximum Eenergy Dissipation Algoritm)

  • Cho, Sang Won;Jung, Hyung Jo;Han, La San
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.435-441
    • /
    • 2003
  • 본 논문에서는 Maximum Energy Dissipation Algorithm(MEDA) 사장교의 MR댐퍼제어에 적용하고자 한다 MR댐퍼의 제어를 위해서 여러 제어 이론들이 제안되었으나, 각각의 특성에도 불구하고 성능면에서는 큰 차이가 없다 MEDA는 Lyapunove 직접법을 바탕으로 군성되는 제어이론으로써, 15년전에 제안되었음에도 실제 토목구조물에는 적용된 바 없어 그 성능 및 장점이 제대로 검증되지 않았다. 따라서 본 논문에서는 벤치마크 사장교 수치예제를 통해서, MEDA의 토목구조물에의 적용성을 성능(performance)과 강인성(robustness) 측면에서 분석하려한다. 수치예제에서 다양한 지진에 대한 층간변위, 가속도, 그리고 상대변위의 각 제어기법에 의한 감소량은 벤치마크문제에 정의된 평가지수(evaluation criteria)를 사용하였다.

  • PDF

진동 방사음을 이용한 터보차져 휠 동특성 시험에 대한 고찰 (Study on the Modal Test for a Turbocharger Wheel Using Vibro-acoustic Responses)

  • 이형일;이덕영;박호일
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.29-37
    • /
    • 2011
  • The modal characteristics of a compressor wheel of an automotive turbocharger have been investigated using an experimental method based on an acoustic frequency response function, p/f(${\omega}$), where p is sound pressure radiated from a structure, and f is impact force. First, a well-defined annular disc with narrow radial slots was examined to check whether the vibro-acoustic test could precisely determine natural quencies and vibration modes of structures showing that the vibro-acoustic test proposed in this paper was comparable to the conventional modal test with an accelerometer and the numerical analysis. The conventional method has been found to be inappropriate for compressor wheel because of additional mass due to the accelerometer and additional damping from the accelerometer cable alter the dynamic responses of the wheel blades. odal characteristics of the wheel have been defined using vibro-acoustic test and verified with the results from another conventional method using a laser vibrometer. Natural quencies and mode shapes of a turbocharger wheel, which can't be precisely obtained with onventional method, could be defined accurately without the additional effects from sensor and cable. Proposed method can be applied to small structures where conventional sensors and cables could generate troubles.

Joint distribution of wind speed and direction in the context of field measurement

  • Wang, Hao;Tao, Tianyou;Wu, Teng;Mao, Jianxiao;Li, Aiqun
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.701-718
    • /
    • 2015
  • The joint distribution of wind speed and wind direction at a bridge site is vital to the estimation of the basic wind speed, and hence to the wind-induced vibration analysis of long-span bridges. Instead of the conventional way relying on the weather stations, this study proposed an alternate approach to obtain the original records of wind speed and the corresponding directions based on field measurement supported by the Structural Health Monitoring System (SHMS). Specifically, SHMS of Sutong Cable-stayed Bridge (SCB) is utilized to study the basic wind speed with directional information. Four anemometers are installed in the SHMS of SCB: upstream and downstream of the main deck center, top of the north and south tower respectively. Using the recorded wind data from SHMS, the joint distribution of wind speed and direction is investigated based on statistical methods, and then the basic wind speeds in 10-year and 100-year recurrence intervals at these four key positions are calculated. Analytical results verify the reliability of the recorded wind data from SHMS, and indicate that the joint probability model for the extreme wind speed at SCB site fits well with the Weibull model. It is shown that the calculated basic wind speed is reduced by considering the influence of wind direction. Compared to the design basic wind speed in the Specification of China, basic wind speed considering the influence of direction or not is much smaller, indicating a high safety coefficient in the design of SCB. The results obtained in this study can provide not only references for further wind-resistance research of SCB, but also improve the understanding of the safety coefficient for wind-resistance design of other engineering structures in the similar area.

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.

A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification

  • Ye, X.W.;Ni, Y.Q.;Wai, T.T.;Wong, K.Y.;Zhang, X.M.;Xu, F.
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.363-379
    • /
    • 2013
  • Dynamic displacement of structures is an important index for in-service structural condition and behavior assessment, but accurate measurement of structural displacement for large-scale civil structures such as long-span bridges still remains as a challenging task. In this paper, a vision-based dynamic displacement measurement system with the use of digital image processing technology is developed, which is featured by its distinctive characteristics in non-contact, long-distance, and high-precision structural displacement measurement. The hardware of this system is mainly composed of a high-resolution industrial CCD (charge-coupled-device) digital camera and an extended-range zoom lens. Through continuously tracing and identifying a target on the structure, the structural displacement is derived through cross-correlation analysis between the predefined pattern and the captured digital images with the aid of a pattern matching algorithm. To validate the developed system, MTS tests of sinusoidal motions under different vibration frequencies and amplitudes and shaking table tests with different excitations (the El-Centro earthquake wave and a sinusoidal motion) are carried out. Additionally, in-situ verification experiments are performed to measure the mid-span vertical displacement of the suspension Tsing Ma Bridge in the operational condition and the cable-stayed Stonecutters Bridge during loading tests. The obtained results show that the developed system exhibits an excellent capability in real-time measurement of structural displacement and can serve as a good complement to the traditional sensors.

Modeling of wind and temperature effects on modal frequencies and analysis of relative strength of effect

  • Zhou, H.F.;Ni, Y.Q.;Ko, J.M.;Wong, K.Y.
    • Wind and Structures
    • /
    • 제11권1호
    • /
    • pp.35-50
    • /
    • 2008
  • Wind and temperature have been shown to be the critical sources causing changes in the modal properties of large-scale bridges. While the individual effects of wind and temperature on modal variability have been widely studied, the investigation about the effects of multiple environmental factors on structural modal properties was scarcely reported. This paper addresses the modeling of the simultaneous effects of wind and temperature on the modal frequencies of an instrumented cable-stayed bridge. Making use of the long-term monitoring data from anemometers, temperature sensors and accelerometers, a neural network model is formulated to correlate the modal frequency of each vibration mode with wind speed and temperature simultaneously. Research efforts have been made on enhancing the prediction capability of the neural network model through optimal selection of the number of hidden nodes and an analysis of relative strength of effect (RSE) for input reconstruction. The generalization performance of the formulated model is verified with a set of new testing data that have not been used in formulating the model. It is shown that using the significant components of wind speeds and temperatures rather than the whole measurement components as input to neural network can enhance the prediction capability. For the fundamental mode of the bridge investigated, wind and temperature together apply an overall negative action on the modal frequency, and the change in wind condition contributes less to the modal variability than the change in temperature.