• Title/Summary/Keyword: cable supported bridge

Search Result 91, Processing Time 0.023 seconds

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

Evaluation of Tension Force of Stay Cables Using Vibration Method (진동법을 이용한 인장 케이블의 장력 추정에 관한 연구)

  • Kim, Nam-Sik;Jeong, Woon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.956-963
    • /
    • 2002
  • In a recent construction industry, cable supported structures such as a cable-stayed bridge or space stadium have been increasingly constructed according to rapidly upgrade their related technologies. Generally stay cables as a critical member need to be rearranged for being satisfied with design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted on existing stay cables. In this study, cable vibration tests were tarried out to evaluate the cable tension forces comparing with theoretical and practical formulas. Using the measured frequencies obtained from free vibration and Impulsive tests, an accuracy of the estimated tension forces is confirmed according to use the first single mode only or higher multiple modes.

Automatic modal identification and variability in measured modal vectors of a cable-stayed bridge

  • Ni, Y.Q.;Fan, K.Q.;Zheng, G.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.123-139
    • /
    • 2005
  • An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm for identifying modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers permanently installed on the cable-stayed Ting Kau Bridge. With the continuously identified results, variability in modal vectors due to varying environmental conditions and measurement errors is observed. Such an observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring use.

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Structural Safety Evaluation of Cable Stayed Bridge based on Cable Damage Scenarios (사장교 케이블 손상 사나리오에 따른 구조 안전 수준 평가)

  • Kim, Ga Young;Seo, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.105-111
    • /
    • 2018
  • This study aims to evaluate the safety for cable stayed bridge due to damages on the cable system. Many cable supported bridges, including cable stayed bridge and suspension bridge, have been built in the Korean peninsula. This requires efficient maintenance and management since this structure has complex structural components and system. This large structure also often faces risks either from manmade or natural phenomenon. In 2015 one cable-stayed bridge in South Korea had been struck by a bolt of lightning on the cables. This event had led to fire on cables. These cables had been damaged and putting the bridge at risk. This bridge was back in used after a few weeks of investigations and replacements of the cables. However, enormous social and economic expense were paid for recovery. After this event risk based management for infra structures is required by public demands. Therefore, this study was initiated and aimed to evaluate risks on the cable system due to potential damages. In this paper one cable-stayed bridge in South Korea was selected and investigated its safety based on the damage scenarios of cable system for efficient and prompt management, and for supporting decision making. FEM analysis was conducted to evaluate the safety of the bridges due to damages on the cable system.

Aerodynamic shape optimization emphasizing static stability for a super-long-span cable-stayed bridge with a central-slotted box deck

  • Ledong, Zhu;Cheng, Qian;Yikai, Shen;Qing, Zhu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.337-351
    • /
    • 2022
  • As central-slotted box decks usually have excellent flutter performance, studies on this type of deck mostly focus on the vortex-induced vibration (VIV) control. Yet with the increasing span lengths, cable-supported bridges may have critical wind speeds of wind-induced static instability lower than that of the flutter. This is especially likely for bridges with a central-slotted box deck. As a result, the overall aerodynamic performance of such a bridge will depend on its wind-induced static stability. Taking a 1400 m-main-span cable-stayed bridge as an example, this study investigates the influence of a series of deck shape parameters on both static and flutter instabilities. Some crucial shape parameters, like the height ratio of wind fairing and the angle of the inner-lower web, show opposite influences on the two kinds of instabilities. The aerodynamic shape optimization conducted for both static and flutter instabilities on the deck based on parameter-sensitivity studies raises the static critical wind speed by about 10%, and the overall critical wind speed by about 8%. Effective VIV countermeasures for this type of bridge deck have also been proposed.

Plan IE Design Of Extradosed Bridge Supported by Single Plane Cables (일면지지식 Extradosed교의 계획 및 설계)

  • 이종대;이두화;권소진;김종수;손준상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.615-620
    • /
    • 2001
  • The aim of this paper is to open up a relatively new type in bridge engineering by introducing plan and design of extradosed bridge which is implemented in Sungnam-Janghowon T/K project. The topic encompasses parametric study including the behavior of the bridge relevant to the cable layout, the distance from pier table to the first cable's location, the height of pylon, the stiffness of cross section and wind vibration to ascertain sectional type of bridge and span length. For the purpose of the knowledge base presented here, the important feature of design is recommended such as modeling method, camber control, finite element analysis and heat hydration of pier table. We can verify the issue related to the characteristics of extradosed bridge as a result of study and design endeavor.

  • PDF

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

Aerodynamic Flutter Control for Typical Girder Sections of Long-Span Cable-Supported Bridges

  • Yang, Yongxin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.205-217
    • /
    • 2009
  • Aerodynamic flutter control for long-span cable-supported bridges was investigated based on three basic girder sections, i.e. streamlined box girder section, box girder section with cantilevered slabs and two-isolated-girder section. Totally four kinds of aerodynamic flutter control measures (adding fairings, central-slotting, adding central stabilizers and adjusting the position of inspection rail) were included in this research. Their flutter control effects on different basic girder sections were evaluated by sectional model or aeroelastic model wind tunnel tests. It is found that all basic girder sections can get aerodynamically more stabled with appropriate aerodynamic flutter control measures, while the control effects are influenced by the details of control measures and girder section configurations. The control effects of the combinations of these four kinds of aerodynamic flutter control measures, such as central-slotting plus central-stabilizer, were also investigated through sectional model wind tunnel tests, summarized and compared to the flutter control effect of single measure respectively.

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.