• 제목/요약/키워드: cable force identification method

검색결과 11건 처리시간 0.027초

A new cable force identification method considering cable flexural rigidity

  • Wang, Long;Wu, Bo;Gao, Junyue;Shi, Kairong;Pan, Wenzhi;He, Zhuoyi;Ruan, Zhijian;Lin, Quanpan
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.227-235
    • /
    • 2018
  • Cables are the main load-bearing members of prestressed structure and other tensegrity structures. Based on the static equilibrium principle, a new cable force identification method considering cable flexural rigidity is proposed. Its computational formula is derived and the strategy to solve its implicit formula is introduced as well. In order to improve the reliability and practicality of this method, the influence of the cable flexural rigidity on cable force identification accuracy is also investigated. Through cable force identification experiments, the relationships among certain parameters including jacking force, jacking displacement, initial cable force, and sectional area (flexural rigidity) are studied. The results show that the cable force calculated by the proposed method considering flexural rigidity is in good agreement with the finite element results and experimental results. The proposed method with high computational accuracy and resolution efficiency can avoid the influences of the boundary condition and the length of the cable on calculation accuracy and is proven to be conveniently applied to cable force identification in practice.

다양한 해석적 방법에 의한 케이블 구조의 장력 추정 (Tension Force Identification of Cable Structures using Various Analytical Methods)

  • 노명현;이상열
    • 복합신소재구조학회 논문집
    • /
    • 제3권3호
    • /
    • pp.38-46
    • /
    • 2012
  • The method based on various mathematical characteristic equations for identifying tensile forces in the cable structure system are used as response data to reflect the properties of the dynamic sensitivity. The vibration tests have been conducted with respect to levels of applied weight for the sagged cable. In this study, a set of natural frequencies are extracted from the measured dynamic data. Next, existing characteristic equation methods based these extracted natural frequencies are applied to identify tensil forces of the sagged cable system. Through several verification procedures, the proposed methods could be applied to a sagged cable system when the initial material data are insufficiency.

진동기반의 SI 기법을 이용한 현수교 행어의 장력 추정 : III. 실험적 검증 (Estimating Tensile Force of Hangers in Suspension Bridges Using Frequency Based SI Technique : III. Experimental Verification)

  • 장한택;김병화;박대효
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.215-222
    • /
    • 2008
  • 본 논문은 현수교 이중 행어 시스템에 대한 진동기반 SI 장력추정기법의 실험적 검증을 소개한다. 현수교 이중 행어 시스템을 모사한 실험 모델을 제작되었으며, 세가지 경우의 클램프 위치에 대한 세가지 경우의 행어장력에 대해서 총 9회의 진동실험이 반복 수행되었다. 각각의 계측된 가속도 응답 데이터에 대해서, 모달분석을 통한 고유진동수와 모드 형상이 추출되었다. 추출된 일련의 동특성치들에 대하여 기존의 장력추정 이론인 현이론과 선형회기법을 적용하여 장력을 추정하였다. 또한 진동기반 SI 장력추정기법을 적용하여 장력을 추정하였는데, 추정된 장력은 수치모델과 계측모델의 동적 특성치들이 동일하게 될 때, 수치모델의 케이블 장력을 인식함으로써 추정되었다. 추정결과, 클램프의 위치에 따라서 기존의 이론을 이용한 추정장력의 오차는 최대 53.1%까지 보이는 반면, 진동기반 SI기법을 이용한 추정장력기법의 장력추정 오차는 모든 경우에 대하여 3% 이내 이다.

SI 기법을 이용한 현수교 행어케이블의 장력 추정 (Estimating Tensile Force of Hangers in Suspension Bridges Using SI Technique)

  • 박대효;문석용;김병화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.786-793
    • /
    • 2006
  • For the purpose of developing a vibration-based tension force evaluation procedure for hangers in suspension bridges, a 3D finite element model of hangers is constructed in this paper. With the developed finite element formulation, a frequency-based sensitivity-updating algorithm is applied to identify the target cable system the proposed method is also able to identify the flexural rigidity. the axial rigidity, and the torsion rigidity of a cable. For a field application, a vibration test on hangers of the Yong Jong Grand Suspension Bridge is carried out and the collected data is used to verify the proposed method.

  • PDF

사장교의 구조식별을 위한 가진실험 데이터분석 (FVT Signal Processing for Structural Identification of Cable-stayed Bridge)

  • 이정휘;김정인;윤자걸
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.923-929
    • /
    • 2004
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neuralnetwork. 7he considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck. and vortical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used for the structural identification using arbitrarily added masses to the bridge.

사장교의 구조식별을 위한 가진실험 데이터분석 (FVT Signal Processing for Structural Identification of Cable-Stayed Bridge)

  • 윤자걸;이정휘;김정인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.619-623
    • /
    • 2003
  • In this research, Forced Vibration Test(FVT) on a cable stayed bridge was conducted to examine the validity of the frequency domain pattern recognition method using signal anomaly index and artificial neural network. The considering structure, Samchunpo Bridge, located in Sachun-Shi, Kyungsangnam-Do, is a cable stayed bridge with the 436 meter span. The excitation force was induced by a sudden braking of a fully loaded truck, and vertical acceleration signals were acquired at 14 points. The initial 2-dimensional FE-model was developed from the design documents to prepare the training sets for the artificial neural network, and then the model calibration was performed with the field test data. As a result of the model calibration, we obtained the FFT spectrums from the model simulation, which was similar to those from the vibration test. These tests and the simulation data will be used fur the structural identification using arbitrarily added masses to the bridge.

  • PDF

Displacement and force control of complex element structures by Matrix Condensation

  • Saeed, Najmadeen M.;Kwan, Alan S.K.
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.973-992
    • /
    • 2016
  • A direct and relatively simple method for controlling nodal displacements and/or internal bar forces has been developed for prestressable structural assemblies including complex elements ("macro-elements", e.g., the pantographic element), involving Matrix Condensation, in which structural matrices being built up from matrices of elementary elements. The method is aimed at static shape control of geometrically sensitive structures. The paper discusses identification of the most effective bars for actuation, without incurring violation in bar forces, and also with objective of minimal number of actuators or minimum actuation. The advantages of the method is that the changes for both force and displacement regimes are within a single formulation. The method can also be used for adjustment of bar forces to either reduce instances of high forces or increase low forces (e.g., in a cable nearing slack).

Mode identifiability of a cable-stayed bridge based on a Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun
    • Smart Structures and Systems
    • /
    • 제17권3호
    • /
    • pp.471-489
    • /
    • 2016
  • Modal identification based on ambient vibration data has attracted extensive attention in the past few decades. Since the excitation for ambient vibration tests is mainly from the environmental effects such as wind and traffic loading and no artificial excitation is applied, the signal to noise (s/n) ratio of the data acquired plays an important role in mode identifiability. Under ambient vibration conditions, certain modes may not be identifiable due to a low s/n ratio. This paper presents a study on the mode identifiability of an instrumented cable-stayed bridge with the use of acceleration response data measured by a long-term structural health monitoring system. A recently developed fast Bayesian FFT method is utilized to perform output-only modal identification. In addition to identifying the most probable values (MPVs) of modal parameters, the associated posterior uncertainties can be obtained by this method. Likewise, the power spectral density of modal force can be identified, and thus it is possible to obtain the modal s/n ratio. This provides an efficient way to investigate the mode identifiability. Three groups of data are utilized in this study: the first one is 10 data sets including six collected under normal wind conditions and four collected during typhoons; the second one is three data sets with wind speeds of about 7.5 m/s; and the third one is some blind data. The first two groups of data are used to perform ambient modal identification and help to estimate a critical value of the s/n ratio above which the deficient mode is identifiable, while the third group of data is used to perform verification. A couple of fundamental modes are identified, including the ones in the vertical and transverse directions respectively and coupled in both directions. The uncertainty and s/n ratio of the deficient mode are investigated and discussed. A critical value of the modal s/n ratio is suggested to evaluate the mode identifiability of the deficient mode. The work presented in this paper could provide a base for the vibration-based condition assessment in future.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

확률유한요소해석에 의한 사장교의 민감도 분석 및 안전성 평가 (The Sensitivity Analysis and Safety Evaluations of Cable Stayed Bridges Based on Probabilistic Finite Element Method)

  • 한성호;조태준;방명석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.141-152
    • /
    • 2007
  • 극한하중을 견딜 수 있도록 설계된 구조물이라도 내재된 확률변수의 불확실성 때문에 구조물의 응답특성을 평가하는데 있어서 기존의 결정론적 방법에 비해 확률유한요소법을 이용하는 것이 보다 합리적일 것이다. 따라서 본 연구에서는 실제 시공된 사장교를 대상으로 확률변수가 교량의 안전성에 미치는 영향을 정량적으로 평가하기 위해 민감도 분석을 수행하였다. 초기형상해석을 수행한 후, 확률유한요소해석 및 민감도 분석과정의 효율성을 위해 섭동법을 이용하여 해석프로그램을 개발하였다. 개발된 해석프로그램의 정확성은 몬테카르로 시뮬레이션 방법에 의한 해석프로그램을 개발하여 검증하였다. 각각의 확률변수의 변동계수에 따른 대상 사장교의 응답에 대한 민감도 분석을 수행한 결과, 외부하중에 의한 영향이 지배적인 것을 확인할 수 있었다. 부재강성 및 케이블의 긴장력 등도 부재에 따라 큰 영향을 나타내므로, 구조물 설계 시 개발된 프로그램이 안전성 확보에 기여할 것으로 판단된다.