• Title/Summary/Keyword: cabbage kimchi

Search Result 555, Processing Time 0.638 seconds

Effect of Enzyme and Inorganic Salts Addition and Heat Treatment on kimchi Fermentation (효소 및 염의 첨가와 순간 열처리가 김치발효에 미치는 영향)

  • Kang, Kun-Og;Ku, Kyung-Hyung;Lee, Hyung-Jae;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.183-187
    • /
    • 1991
  • The effects of microwave heat treatment and addition of enzyme, kimchi liquid, buffer solution and several salts on the changes in pH of kimchi liquid were investigated during fermentation at $25{\sim}35^{\circ}C$. It was found that microwave heat treatment on brined chinese cabbage and enzyme addition of cellulase and amylase showed a little improvement effect, while combination of both methods significantly increased the fermentation rate. The addition of kimchi liquid having pH 4.6 was found to be very desirable for both shortening the fermentation time and flavor acceptance. Among the inorganic salts and buffer solution studied, phosphate buffer(pH 4.6), sodium nitrite and $Na_2HPO_4$ were significantly effective for reduction of kimchi fermentation rate by two to three folds.

  • PDF

Presence and Control of Coliform Bacteria in Kimchi (김치 발효중 대장균군의 소장과 억제에 관한 연구)

  • Chung, Chang-Ho;Kim, Youn-Soon;Yoo, Yang-Ja;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.999-1005
    • /
    • 1997
  • The consistant appearance of coliforms in fermenting kimchi was examined and measures of removing coliforms early in the fermentation were investigated. Allyl isothiocyanate $({\geq}50\;ppm)$, horseradish powder $({\geq}0.4%)$, and garlic juice $({\geq}2.0%)$ were effective in removal of coliforms early in kimchi fermentation. However, mustard powder and methyl methanethiosulfonate were not effective. Nisin, known as a promising agent for the prevention of kimchi over-acidification, allowed coliforms to survive in kimchi longer with only marginal extention of edible period. Individual kimchi ingredients such as Chinese cabbage, garlic, red pepper powder, ginger and green onion were all found to contain coliforms. Coliforms were not detected from garlics sold unpeeled and commercially prepared red pepper powder.

  • PDF

Effect of Added Doenjang (Soybean Paste) on the Kimchi (Fermented Korean Cabbage) Fermentation (된장 첨가가 김치 발효에 미치는 영향)

  • Lim, Yong-Suk
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.139-143
    • /
    • 2008
  • The potential use of Doenjang in place of salted-fish juice as an ingredient in Kimchi fermentation was examined, to improve Kimchi qualities such as flavor and taste. Quality characteristics were monitored during progressive fermentation of Kimchi with Doenjang (KD) at 7 d intervals for 28d at constant temperature $(10^{\circ}C)$. The data showed that the pH of KD was somewhat lower than that of the control as fermentation progressed. The titratable acidity in KD was linearly proportional to the pH change. Both the growth of lactic acid bacilli and total bacteria in Kimchi were inhibited in KD compared to control. In terms of color, the L, a, and b values of KD were all lower than those of control. In sensory evaluation, the taste, flavor, color, and overall acceptability of the new form of Kimchi were increased significantly by addition of 5 % (w/w) Doenjang (p<0.05). All data indicated that the color and taste properties of KD were improved by addition of Doenjang during fermentation.

Fermentation Characteristics of Kimchi Treated with Different Methods of Green Tea Water Extracts (녹차의 처리방법에 따른 김치의 발효특성)

  • Kim, Mee-Kyung;Kim, Soon-Dong
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.354-359
    • /
    • 2003
  • This study was conducted to investigate the fermentation characteristics of kimchi treated with different methods of water extracts of powdered green tea(GT). Four different kimchis, the SB-kimchi(control) which was not treatment of the extracts, SG-kimchi prepared with Chinese cabbage(CC) salted in 1% GT containing 10% brine, DG-kimchi prepared with CC dipped in 1% GT for 30 min after salting, MS-kimchi prepared with the salted CC mixed with 1% GT containing seasonings. All kimchis was fermented at 10$^{\circ}C$. The pH of treated-kimchis were maintained higher than those of control products during fermentation, but it showed no big difference between each treated groups. Total microbe of SB-kimchi(6.27-9.37 cfu/mL) was higher than those of GT-treated kimchi(5.17-9.20) during fermentation. The ratio of lactic acid bacteria against total microbe was higher than the treated kimchis. Total polyphenol content of kimchi was 52.75 mg% in DG-kimchi, 47.71 mg% in MS-kimchi, 44.89 mg% in SG-kimchi, 30.70 mg% in SB-kimchi on the 5th days of fermentation. Scores of crispy taste of SG- and DG-kimchi on the 5th days of fermentation was 4.03 and 4.01 points, respectively which was higher than control products. Scores of fishy and hot taste of GT-treated kimchi were lower than those of control products during all fermentation periods.

Fermentation Characteristics of Kimchi Treated with Different Methods of Green Tea Water Extracts (녹차의 처리방법에 따른 김치의 발효특성)

  • 김미경;김순동
    • Food Science and Preservation
    • /
    • v.10 no.3
    • /
    • pp.345-359
    • /
    • 2003
  • This study was conducted to investigate the fermentation characteristics of kimchi treated with different methods of water extracts of powdered green tea(GT). Four different kimchis, the SB-kimchi(control) which was not treatment of the extracts, SG-kimchi prepared with Chinese cabbage(CC) salted in 1% GT containing 10% brine, DG-kimchi prepared with CC dipped in 1% GT for 30 min after salting, MS-kimchi prepared with the salted CC mixed with 1% GT containing seasonings. All kimchis was fermented at 10$^{\circ}C$. The pH of treated-kimchis were maintained higher than those of control products during fermentation, but it showed no big difference between each treated groups. Total microbe of SB-kimchi(6.27-9.37 cfu/mL) was higher than those of GT-treated kimchi(5.17-9.20) during fermentation. The ratio of lactic acid bacteria against total microbe was higher than the treated kimchis. Total polyphenol content of kimchi was 52.75 mg% in DG-kimchi, 47.71 mg% in MS-kimchi, 44.89 mg% in SG-kimchi, 30.70 mg% in SB-kimchi on the 5th days of fermentation. Scores of crispy taste of SG- and DG-kimchi on the 5th days of fermentation was 4.03 and 4.01 points, respectively which was higher than control products. Scores of fishy and hot taste of GT-treated kimchi were lower than those of control products during all fermentation periods.

Effects of Chaenomelis Fructus Water Extract on the Quality Characteristics of Mul-kimchi during Fermentation (모과 추출액이 물김치의 품질 특성에 미치는 영향)

  • Park, La-Young;Jeong, Tae-Seong;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.669-674
    • /
    • 2008
  • Mul-kimchi is more watery than traditional kimchi and is prepared using large amounts of salted water, Chinese cabbage, radishes, and carrots. The quality characteristics of Mul-kimchi prepared with Chaenomelis Fructus water extract (1, 3, or 5%, w/v) (CF Mul-kimchi) or water (control) were investigated during fermentation for 21 days at $10^{\circ}C$. The initial pH values were 6.53 (control), 4.14 (1% CF Mul-kimchi), 3.61 (3% CF Mul-kimchi), and 3.54 (5% CF Mul-kimchi). The pH did not change significantly in CF Mul-kimchi but gradually decreased in the control during fermentation. Changes in titratable acidity were reflected in pH movements. Viable lactic acid bacteria in CF Mul-kimchi were at lower levels than in the control. Viable bacterial levels in Mul-kimchi decreased with increasing concentration of CF water extract. Textural features, such as hardness, cohesiveness, chewiness, and springiness, were higher in CF Mul-kimchi than in control. Anti-oxidative activity, measured by DPPH radical scavenging and nitrite scavenging, of CF Mul-kimchi, were higher than in control, and the activities rose with increasing levels of CF water extract. The sensory qualities of 1% CF Mul-kimchi showed the highest values in taste and overall acceptability among the Mul-kimchi preparations tested.

Quality characteristics of Nabak kimchi with freeze-dried ingredients during storage (동결건조한 원부재료를 이용하여 제조한 나박김치의 저장 중 품질 특성)

  • Cheon, Seon-Hwa;Kang, Mi-Ran;Seo, Hye-Young
    • Food Science and Preservation
    • /
    • v.23 no.2
    • /
    • pp.145-154
    • /
    • 2016
  • This study investigated the possibility of usage of freeze-dried ingredients for the preparation of Nabak kimchi. The quality characteristics of Nabak kimchi using freeze-dried ingredients (radish, kimchi cabbage, green onion, garlic and ginger) were monitored during storage at $4^{\circ}C$. The initial pH of Nabak kimchi was 5.76~5.93, however, it decreased significantly over increasing storage periods (p<0.05). The titratable acidity of Nabak kimchi increased during storage, reaching 0.43~1.08%. Among the freeze-dried samples, those treated with freeze-dried radish and minor ingredients showed lower titratable acidity than that of the control. The initial number of total aerobic and lactic acid bacteria were 5.57~6.25, and 5.52~6.24 log CFU/g, respectively. After 28 days, the population of total aerobic and lactic acid bacteria in the raw ingredients and freeze-dried minor ingredients was less than 8.0 log CFU/g, but more than 9.0 log CFU/g in other samples. Yeasts and molds in Nabak kimchi were detected up to 2~3 log CFU/g, but coliforms were not detected in all samples during storage. The score of firmness and overall acceptability in the control, raw ingredients and freeze-dried minor ingredients were significantly higher than others (p<0.05). These results indicated that freeze-dried ingredients, such as green onion, garlic, and ginger, can be used in kimchi and would delay microbial growth and extend the shelf-life of kimchi without any deduction of sensory quality.

Development of Cabbage Juice Medium for Industrial Production of Leuconostoc mesenteroides Starter

  • Jeong, Eun Ji;Moon, Dae Won;Oh, Joon Suk;Moon, Jin Seok;Seong, Hyunbin;Kim, Kwang Yup;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2112-2118
    • /
    • 2017
  • Leuconostoc mesenteroides is used as a starter to produce high-quality kimchi products. In this study, an efficient and economical cabbage juice medium (CJM) was developed by process optimization of cabbage extraction and pasteurization and by compositional supplementation of various lacking nutrients. The pasteurized cabbage juice was determined to be a good medium candidate to cultivate L. mesenteroides, showing maximal cell numbers ($9.85{\times}10^8CFU/ml$) after 24 h. Addition of sucrose and yeast extract with soy peptone resulted in increment of bacterial cell counts in CJM, showing the supplementing effect of the lacking nutrients. Furthermore, addition of shell powder gave a protective effect on bacterial cells by preventing pH decline and organic acid accumulation in CJM, resulting in a 2-fold increase of bacterial counts. The optimized composition of CJM was 70% cabbage juice diluted with water, 0.5% (w/v) sucrose, 1% (w/v) yeast extract, 1% (w/v) soy peptone, and 1.5% (w/v) ark shell powder. The CJM developed in this study was able to yield a comparable level of bacterial counts with MRS medium and reduced the cost by almost 10-fold.

Quality Enhancement of Kimchi by Pre-Treatment with Slightly Acidic Electrolyzed Water and Mild Heating during Storage (미산성 차아염소산수와 미가열 병용 처리를 통한 원료 전처리 및 김치 저장 중 품질 확보)

  • Park, Joong-Hyun;Kim, Ha-Na;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.269-276
    • /
    • 2016
  • This study was conducted to determine the inactivation effects of slightly acidic electrolyzed water (SAEW) on microorganisms attached to salted Chinese cabbage and food materials of kimchi, such as slice radish and green onion. In addition, changes in microbial and physicochemical quality of manufactured kimchi during storage at $4^{\circ}C$ for 4 weeks were investigated. Compared to the untreated control with tap water, total bacterial counts (TBC) of Chinese cabbage, slice radish, and green onion were reduced by 1.75, 1.68, and 1.03 log CFU/g at dipping times of 20 min, 5 min, and 10 min, respectively, upon treatment with 30 ppm SAEW at $40^{\circ}C$. Effect of microbial inhibition was higher in salted Chinese cabbage brined in 10% salt (w/v) of 30 pm SAEW at $40^{\circ}C$ than in untreated control with tap water, as indicated by 1.00 log CFU/g reduction. TBC of kimchi manufactured with materials treated with 30 ppm SAEW at $40^{\circ}C$ was not significantly affected compared to untreated control, although coliforms were remarkably reduced compared to the untreated control. At the beginning of storage (1 weeks), TBC and lactic acid bacteria (LAB) counts increased by approximately 9 and 7.66~8.18 log CFU/g, respectively, and coliforms were completely eliminated. The pH and acidity of kimchi at 2 weeks were 4.34~4.49 and 0.55~0.66%, respectively, and then slowly decreased. The texture (firmness) of kimchi decreased with storage time, but the difference was not significant. This combined treatment might be considered as a potentially beneficial sanitizing method for improving the quality and safety of kimchi.

A Study on Flavorous Taste Components in Kimchis -On Free Amino Acids- (김치의 맛 성분(成分)에 관(關)한 연구(硏究) -유리(遊離) 아미노산(酸)에 관(關)하여 -)

  • Cho, Young;Rhee, Hai-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 1979
  • Free amino acids and total free sugar of kimchi were identified. Free amino acids of kimchis were extracted by 80% ethanol and isolated by ion exchange chromatography. Identification and quantitative determination of individual free amino acids were performed by amino acid autoanalyzer. Free sugar of kimchis was extracted by aqueous ethanol and isolated by ion exchange chromatography. Quantitative determination of it was perfermed by spectrophotometer. The results are summarized as follows: 1. Lysine, histidine, arginine, tryptophan, aspartic acid, threonine, glutamic acid, proline, glycine, alanine, cysteine, valine, methionine, leucine, isoleucine, tyrosine and phenylalanine were found in all kimchis. 2. The change of free amino acid composition during fermentation of kimchis was not observed, but the amount of total free amino acids of fermented kimchi decreased as compared with those of raw kimchi. 3. In kimchi containing 10 ml of fermented anchovy solution/100 g of chinese cabbage, the amount of total free amino acids was more than that of fermented salt kimchi and the characteristic flavor of it was attributed to such amino acids as lysine, aspartic acid, glutamic acid, valine, methionine, isoleucine and leucine. 4. Large amount of free sugar in raw salt kimchi decreased during fermentation, but, after fermentation, significant difference of free sugar content between salt kimchi and kimchi containing fermented anchovy solution was not observed.

  • PDF