• 제목/요약/키워드: cAMP

검색결과 1,015건 처리시간 0.028초

온도변화에 의한 cAMP 수용성 단백질(CRP)의 구조 (Study on the structure of cAMP receptor protein(CRP) by temperature change)

  • 주종호;구미자;강종백
    • 생명과학회지
    • /
    • 제10권3호
    • /
    • pp.279-285
    • /
    • 2000
  • cAMP 수용성 단백질인 CRP는 Escherichia coli에서 대사와 관련된 유전자의 전사를 조절한다. 본 연구는 야생형과 돌연변이 CRP 단백질의 열적 안정성과 온도에 따른 단백질의 구조변화를 관찰하기 위 하여 proteolytic digestion, UV spectrophotometer, CD spectrapolarimeter 등의 방법을 사용하였다. cAMP가 없을 때에는 야생형, S83G, S128A CRP가 열적 안정성에서 큰 차이를 보이지 않았지만, cAMP가 존재할 때 야생형 CRP가 다른 돌연변이 CRP보다 열적으로 더욱 안정함을 보였다. 그리고 protease digestion 실험을 통하여 높은 온도에서 cAMP의 존재와 무관하게 돌연변이 CRP에서 단백질 의 변성으로 인한 절단된 단백질띠를 관찰할 수 있었다. 그리고 55$^{\circ}C$에서 측정한 CD 스펙트럼에서 단백 질의 2차 구조인 $\alpha$-helix 구조가 부분적으로 파괴되었음이 관찰되었다.

  • PDF

원핵세포에서 신호물질 및 조절인자로서의 3',5'-Cyclic Adenosine Monophosphate의 역할 (3',5'-Cyclic Adenosine Monophosphate (cAMP) as a Signal and a Regulatory Compound in Bacterial Cells)

  • 천세진;석영재;이규호
    • 한국미생물·생명공학회지
    • /
    • 제34권4호
    • /
    • pp.289-298
    • /
    • 2006
  • 3',5'-cyclic adenosine monophosphate (cAMP) is an important molecule, which mediates diverse cellular processes. For example, it is involved in regulation of sugar uptake/catabolism, DNA replication, cell division, and motility in various acterial species. In addition, cAMP is one of the critical regulators for syntheses of virulence factors in many pathogenic bacteria. It is believed that cAMP acts as a signal for environmental changes as well as a regulatory factor for gene expressions. Therefore, intracellular concentration of cAMP is finely modulated by according to its rates of synthesis (by adenylate cyclase), excretion, and degradation (by cAMP phosphodiesterase). In the present review, we discuss the bacterial physiological characteristics governed by CAMP and the molecular mechanisms for gene regulation by cAMP. Furthermore, the effect of cAMP on phosphotransferase system is addressed.

갑상선호르몬 분비조절물질과 인삼성분의 복합처리가 갑상선세포의 cAMP 양에 미치는 영향 (The Effect of Ginseng Saponin Fractions with Thyroid Hormone Secretion Regulatory Agents on cAMP Level in Cultured Rat Thyroid Glands)

  • 정경훈;김세창·정노팔
    • Journal of Ginseng Research
    • /
    • 제12권2호
    • /
    • pp.135-144
    • /
    • 1988
  • 갑상선호르몬 분비조절물질(TSH, DB cAMP, NaF, carbachol, isoproterenol, propranolol)과 인삼성분(total saponin, diol saponin, triol saponin)의 복합처리가 갑상선의 cAMP의 양에 미치는 영향을 알아보기 위하여, 흰쥐의 갑상선을 4일 또는 7일간 배양한 후 갑상선호르몬 분비조절물질과 인삼성분을 각각 복합처리, 또는 단독처리하여 cAMP의 양을 조사하였다. 인삼성분만을 처리한 경우, total saponin은 $10^{-5}$%(w/v), diol saponin과 triol saponin은 $10^{-4}$%(w/v)의 농도에서 각각 가장 높은 증가를 나타내었다. 갑상선호르몬 분비조절물질과 복합처리한 인삼성분의 농도는 위의 값으로 하였다. 복합처리한 경우, TSH에 대해서는 증가효과를 나타냈지만 그 양상은 작았다. Total saponin은 DBcAMP와 isoproterennol에 대해서는 증가효과를, carbachol과 propranolol에 대해서는 감소효과를 나타내었고, NaF에 대해서는 영향이 크지 않았다. Diol saponin과 triol saponin은 그 양은 다르지만 isoproterenol을 복합처리한 경우를 제외하고 diol saponin은 감소효과를, triol saponin은 증가효과를 보이는 상반작용을 나타내었다. 억제효과를 가지는 propranolol에 대해서도 diol saponin과 triol saponin은 상반되는 효과를 나타내었다. 인삼성분의 정상화작용은 NaF와 carbachol의 경우에도 두드러지게 나타났다. 이상의 결과들은 인삼성분이 갑상선호르몬의 생성과 분비에 관여하는 cAMP의 생성에 촉진 또는 억제를 가진다는 것을 나타내고 있다.

  • PDF

B16 Melanoma 세포에서 Protein Kinase 억제제들이 Cyclic AMP 경로를 통한 멜라닌 생성에 미치는 영향 (Effects of Protein Kinase Inhibitors on Melanin Production in B16 Melanoma Cells Stimulated via Cyclic AMP-dependent Pathway)

  • 차상복;조남영;윤미연;임혜원;김경원;박영미;이지윤;이진희;김창종
    • 약학회지
    • /
    • 제47권1호
    • /
    • pp.31-36
    • /
    • 2003
  • To investigate the effect of protein kinase on melanin production via cAMP-dependent pathway, we measured the melanin amount and tyrosinase activity in B16 melanoma cells stimulated by alpha-melanocyte stimulating hormone (MSH), forskolin and 8-Br-cAMP. MSH, forskolin and 8-Br-cAMP significantly increased both melanin production and tyrosinase activity in B16 cells. Melanin production and tyrosinase activity by MSH are significantly inhibited by cyclic AMP-dependent protein kinase inhibitor (KT5720) and protein kinase C down-regulation treated with PMA. Bisindolmaleimide (1$\mu$M), protein kinase C inhibitor, significantly inhibited melanin production and tyrosinase activity stimulated by MSH, forskolin and 8-Br-cAMP with the following order of potency: MSH>forskolin>8-Br-cAMP. Tyrosine kinase inhibitor, genistein and DHC, significantly inhibited both, but the inhibitory effect was more potent in 8-Br-cAMP-stimulated B16 cells than MSH-stimulated cells. NFkB inhibitor (parthenolide) significantly inhibited melanin production and tyrosinase activity. Neither melanin production nor tyrosinase activity induced by MSH, forskolin and 8-Br-cAMP were affected by KN-62 (calmodulin-dependent protein kinase II inhibitor), PD098059 (mitogen-activated protein kinase inhibitor, MAPKK) and worthmannin (phosphatidylinositol 3-kinase inhibitor). These results suggest that both protein kinase C and tyrosine kinase are involved in melanin production by cyclic AMP-dependent pathway and NFkB pathway may play an important role in cyclic AMP-dependent melanin production in B16 melanoma cells.

Complex Formation of Adenosine 3',5'-Cyclic Monophosphate with β-Cyclodextrin: Kinetics and Mechanism by Ultrasonic Relaxation

  • Bae, Jong-Rim;Kim, Jeong-Koo;Lee, Chang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.442-446
    • /
    • 2010
  • Adenosine 3',5'-cyclic monophosphate (cAMP) is a second messenger responsible for a multitude of cellular responses. In this study, we utilized $\beta$-cyclodextrin ($\beta$-CD) as an artificial receptor with a hydrophobic cavity to elucidate the inclusion kinetics of cAMP in a hydrophobic environment using the ultrasonic relaxation method. The results revealed that the interaction of cAMP with $\beta$-CD followed a single relaxation curve as a result of host-guest interactions. The inclusion of cAMP into the $\beta$-CD cavity was found to be a diffusion-controlled reaction. The dissociation of cAMP from the $\beta$-CD cavity was slower than that of adenosine 5'-monophosphate (AMP). The syn and anti glycosyl conformations of adenine nucleotides are considered to play an important role in formation of the inclusion complex. Taken together, our findings indicate that hydrophobic interactions are involved in the inclusion complex formation of cAMP with $\beta$-CD and provide insight into the interactions of cAMP with cAMP-binding proteins.

Intracellular cAMP-modulated Gate in Hyperpolarization Activated Cation Channels

  • Park, Kyung-Joon;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.169-173
    • /
    • 2007
  • Hyperpolarization-activated nonselective cation channels (HCNs) play a pivotal role in producing rhythmic electrical activity in the heart and the nerve cells. In our previous experiments, voltage-dependent $Cd^{2+}$ access to one of the substituted cysteines in S6, T464C, supports the existence of an intracellular voltage-dependent activation gate. Direct binding of intracellular cAMP to HCN channels also modulates gating. Here we attempted to locate the cAMP-modulated structure that can modify the gating of HCN channels. SpHCN channels, a sea urchin homologue of the HCN family, became inactivated rapidly and intracellular cAMP removed this inactivation, resulting in about eight-fold increase of steady-state current level. T464C was probed with $Cd^{2+}$ applied to the intracellular side of the channel. We found that access of $Cd^{2+}$ to T464C was strongly gated by cAMP as well as voltage. Release of bound $Cd^{2+}$ by DMPS was also gated in a cAMP-dependent manner. Our results suggest the existence of an intracellular cAMP-modulated gate in the lower S6 region of spHCN channels.

Ginsenosides에 의한 F9 기형암종세포의 분화유도 과정에서 cAMP의 작용 (Effect of cAMP on the Differentiation of F9 Teratocarcinoma Stem Cells Induced by Ginsenosides)

  • 이열남;이호영
    • Journal of Ginseng Research
    • /
    • 제21권3호
    • /
    • pp.141-146
    • /
    • 1997
  • The role of cAMP in the differentiation process of F9 cells induced by ginsenosides was examined by performing transient transfixion assay with CRE-luciferase reporter plasmid, GR thansactivation assay with GRE-luciferase activity with or without treatment of CAMP and forskolin, an activator of adenylate cyclase, and protein klnase A assay in the presence of ginsenosides. Ginsenosides had no effect on CRE-transactivation activity, whereas retinoic acid induced the activity. When cAMP or forskolin was treated with ginsenosides, GRE-luciferase activity was further augumented by them. In addition, ginsenosides induced protein kinase A activity in the presence of cAMP. These results suggest that ginsenosides activate cAMP-dependent protein kinase A which, in turn, increase GR activity in F9 cells.

  • PDF

Polyphosphate Kinase Affects Oxidative Stress Response by Modulating cAMP Receptor Protein and rpoS Expression in Salmonella Typhimurium

  • Cheng, Yuanyuan;Sun, Baolin
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1527-1535
    • /
    • 2009
  • Polyphosphate (polyP) plays diverse physiological functions in prokaryotes and eukaryotes, but most of their detailed mechanisms are still obscure. Here, we show that deletion of polyphosphate kinase (PPK), the principal enzyme responsible for synthesis of polyP, resulted in augmented expression of cAMP receptor protein (CRP) and rpoS and lowered $H_2O_2$ sensitivity in Salmonella Typhimurium ATCC14028. The binding of cAMP-CRP complex to rpoS promoter and further stimulation of its transcription were proved through electrophoretic mobility shift assay, lacZ fusion, and exogenous cAMP addition, respectively. The rpoS expression increased in cpdA (cAMP phosphodiesterase coding gene) mutant, further suggesting that cAMP-CRP upregulated rpoS expression. These results demonstrate that PPK affects oxidative stress response by modulating crp and rpoS expression in S. Typhimurium.

Effect of Cyclic AMP on the Two Promoters of Escherichia coli Thioredoxin Gene

  • Sa, Jae-Hoon;Fuchs, James A.;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제30권5호
    • /
    • pp.320-325
    • /
    • 1997
  • Thioredoxin is a multi-functional protein which is ubiquitous in microorganisms, animals and plants. Previously, expression of the E. coli thioredoxin gene was found to be negatively regulated by cAMP. In the present study, the effect of cAMP on two separate promoters of the E. coli thioredoxin gene was investigated. Cyclic AMP had a repressible effect on P1 and P1P2 promoter activity of the constructs. This effect was also observed in the cya strain. The P2 promoter construct gave very high -galactosidase activity, and its expression was not affected by exogenous cAMP. It was assumed that a cis-acting negative element, probably the cAMP-CRP binding site, might have been deleted in the P1 promoter construct. Repression of the thioredoxin gene expression by cAMP appeared to be independent of ppGpp.

  • PDF

교정적 치아이동시 부갑상선홀몬이 긴장측 치주세포의 cAMP농도에 미치는 영향 (THE EFFECT OF PARATHYROID HORMONE ON CYCLIC AMP LEVEL AND DISTRIBUTION IN PERIODONTAL CELLS IN TENS10N SITES DURING ORTHODONTIC TREATMENT)

  • ;이기수
    • 대한치과교정학회지
    • /
    • 제16권1호
    • /
    • pp.51-70
    • /
    • 1986
  • Parathyroid hormone (PTH) is known to exert its effects on bone cells through the mediation of adenosine 3', 5'-monophosphate (cAMP). Orthodontic forces have also been shown to alter the cAMP content of paradental cells, particularly the alveolar bone osteoblasts. The objective of this experiment was to determine whether a combined orthodontic treatment-PTH administration regimen would have an additive effect on cAMP content in paradental cells in sites of periodontal ligament (PDL) tension. Seven groups of 4 one year old female cats each were treated for 1,3,6,12,24 h, 7 and 14 d by tipping one maxillary canine. PTH was administered twice daily, 30u/kg. Maxillary horizontal sections were stained immunohistochemically for cAMP and the degree of cellular staining intensity was determined microphotometrically as per cent light transmittance at 600nm. Alveolar bone osteoblasts, progenitor cells, PDL fibroblasts and cementoblasts in tenion sites were measured and the data were analyzed statistically by a mixed model analysis of variance. PTH administration increased the cAMP staining of nonorthodontically treated paradental cells in comparison to cells untreated by force or hormone. Cells in PDL tension sites of PTH-treated cats demonstrated significantly darker cAMP staining than cells in non-orthodontically-treated sites. Osteoblasts demonstrated the greatest response in terms of cAMP elevation, while in PDL fibroblasts orthodontic force did not increase cAMP levels above those measured in non-stretched hormonally-treated cells. These results demonstrate that PTH increases cAMP levels in paradental cells, particullarly in osteoblasts, and that the effects of PTH and orthodontic forces on paradental target cells may approach additivity.

  • PDF