• Title/Summary/Keyword: cAMP/cGMP

Search Result 94, Processing Time 0.027 seconds

Studies on Degradation of Nucleic acid and Related Compounds by Microbial Enzymes (미생물 효소에 의한 핵산 및 그의 관련물질의 분해에 관한 연구)

  • Kim, Sang-Soon
    • Applied Biological Chemistry
    • /
    • v.13 no.2
    • /
    • pp.111-129
    • /
    • 1970
  • As a series of studies on the nucleic acids and their related substances 210 samples were collected from 76 places such as farm soil, compost of heap, nuruk and meju to obtain microbial strains which produce 5'-phosphodiesterase. From these samples total of 758 strains were isolated by the use of dilution pour plate method. For all isolated strains primary screening of the productivity of RNA depolymerase was performed and useful strains with regard to 5'-phosphodiesterase productivities were identified. For these useful strains optimum condition, the effect of various compounds on the activity of 5'-phosphodiesterase, and the optimum condition for enzyme reaction were discussed. The quantitative of 5'-mononucleotides produced by the action of 5'-phosphodiesterase was performed using anion-exchange column chromatography and their identified was done by paper chromatography, thinlayer chromatography, ultra violet spectrophotometry, and characteristic color reaction using carbazole and schiff's reagent. (1) Penicillium citreo-viride PO 2-11 and Streptomyces aureus SOA 4-21 from soil were identified as a potent 5'-phosphodiesterase producing strains. (2) Optimum culture conditions for Penicillium citreo-viride PO 2-11 strain isolated were found to be pH 5.0 and $30^{\circ}C$, and the optimum conditions for enzyme action of 5'-phosphodiesterase were pH 4.2 and $60^{\circ}C$. Best carbon source for the production of 5'-phosphodiesterase was found to be sucrose and ammonium nitrate for nitrogen source. Addition of 0.01% corn steep liquor or yeast extract exhibited 20% increase in the amount of 5'-phosphodiesterase production compared to the control. 5'-phosphodiesterase produced by this strain was activated by $Mg^{++},\;Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by EDTA, citrate, $Cu^{++},\;CO^{++}$. 5'-phosphodiesterase produced 5'-mononucleotide from RNA at a rate of 65.81%, and among the 5'-mononucleotides accumulated 5'-GMP only was found to have flavorous and the strain was also found lack of 5'-AMP deaminase. Productivity of flavorous 5'-GMP was found to be 186.7mg per gram of RNA. (3) Optimum culture canditions for the isolated Streptomyces aureus SOA 4-21 strain were pH 7.0 and $28^{\circ}C$, and the optimum conditions for the action of 5'-phosphodiesterase were pH 7.3 and $50^{\circ}C$. The best carbon source for 5'-phosphodiesterase production was found to be glucose and that of nitrogen was asparagine. Addition of 0.01% yeast extract exhibited increased productivity of 5'-phosphodiesterase by 40% compared to the non-added control. 5'-phosphodiesterase produced by this strain was activated by $Ca^{++},\;Zn^{++},\;Mn^{++}$ and was inhibited by citrate, EDTA, $Cu^{++}$. It was also found that the strain produce 5'-AMP deaminase in addition to 5'-phosphodiesterase. For this reason although decomposition rate was 63.58% the accumulation of 5'-AMP, 5'-CMP, 5'-GMP and 5'-UMP occurred by the breakdown of RNA. In the course of these reaction 5'-AMP deaminase converted 60% of 5'-AMP thus produced into 5'-IMP and flavorous 5'-mono nucleotide production was significantly increased by this strain over the above mentioned one. Production rates were found to be 171.8mg per grain of RNA for 5'-IMP and 148.2mg per gram of RNA for 5'-GMP, respectively.

  • PDF

Effect of Ginseng Components with Pepsinogen Secretion Regulatory Agents on cAMP Content in Isolated Rabbit Gastric Glands (Pepsinogen 분비조절물질과 인삼성분의 복합처리가 cAMP의 양에 미치는 영향)

  • Jin, Seung-Ha;Kim, Se-Chang;Jeong, No-Pal
    • Journal of Ginseng Research
    • /
    • v.10 no.2
    • /
    • pp.151-158
    • /
    • 1986
  • On the cAMP content in isolated gastric glands from rabbit stomach, the effect of ginseng components (total saponin, diol saponin, triol saponin) with pepsinogen secretion regulatory agents (cholecystokinin, isoproterenol, carbachol, propranolol, atropine, DECAMP, DBcGMP) were studied in vitro. According to the results, ginseng components may have the effect of stimulation or inhibition on cAMP production, and both dial saponin and triol saponin may be reciprocal effect to pepsinogen secretion regulatory agents. It seemed that the ginseng components may have the normalization action to pepsinogen regulatory agents on cAMP content in isolated rabbit gastric glands.

  • PDF

혈관근에서 Na$^{+}$/Ca$^{2+}$ Exchange System의 역할구명

  • Baek, Young-Hong;Kook, Hyun;Ryu, Bong-Soo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.86-86
    • /
    • 1993
  • 혈관근의 수축 또는 이완 반응에서 $Na^{+}$/Ca$^{2+}$ exchange계의 역할을 알아보고자 먼저 가토와 흰쥐 흉부 대동맥에서 수축과 이완 반응을 검색하고 이때의 혈관 이완 반응을 증개하는 cAMP와 cGMP농도를 측정하였다. 내피세포가 존재한 표본에서 acetylcholine은 norepinephrine 수축 반응을 이완시켰고 이완 반응은 methylene blue로 소실되었으며 isoproterenol과 nitroprusside는 내피 존재와 제거 양표본에서 이완 반응을 일으켰으며 이때 isoproterenol은 CAMP농도를, nitroprusside는 cGMP농도를 증가시켰다.

  • PDF

Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser157 phosphorylation on thrombin-induced platelet aggregation

  • Lee, Dong-Ha;Cho, Hyun-Jeong;Kim, Hyun-Hong;Rhee, Man Hee;Ryu, Jin-Hyeob;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.37 no.2
    • /
    • pp.176-186
    • /
    • 2013
  • In this study, we have investigated the effects of total saponin from Korean red ginseng (TSKRG) on thrombin-induced platelet aggregation. TSKRG dose-dependently inhibited thrombin-induced platelet aggregation with $IC_{50}$ value of about 81.1 ${\mu}g/mL$. In addition, TSKRG dose-dependently decreased thrombin-elevated the level of cytosolic-free $Ca^{2+}$ ($[Ca^{2+}]_i$), one of aggregation-inducing molecules. Of two $Ca^{2+}$-antagonistic cyclic nucleotides as aggregation-inhibiting molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), TSKRG significantly dose-dependently elevated intracellular level of cAMP, but not cGMP. In addition, TSKRG dose-dependently inhibited thrombin-elevated adenosine triphosphate (ATP) release from platelets. These results suggest that the suppression of $[Ca^{2+}]_i$ elevation, and of ATP release by TSKRG are associated with upregulation of cAMP. TSKRG elevated the phosphorylation of vasodilator-stimulated phosphoprotein (VASP)-$Ser^{157}$, a cAMP-dependent protein kinase (A-kinase) substrate, but not the phosphorylation of VASP-$Ser^{239}$, a cGMP-dependent protein kinase substrate, in thrombin-activated platelets. We demonstrate that TSKRG involves in increase of cAMP level and subsequent elevation of VASP-$Ser^{157}$ phosphorylation through A-kinase activation to inhibit $[Ca^{2+}]_i$ mobilization and ATP release in thrombin-induced platelet aggregation. These results strongly indicate that TSKRG is a beneficial herbal substance elevating cAMP level in thrombin-platelet interaction, which may result in preventing of platelet aggregation-mediated thrombotic diseases.

Inhibitory Effect of Ginkgolide B on Platelet Aggregation in a cAMP- and cGMP-dependent Manner by Activated MMP-9

  • Cho, Hyun-Jeong;Nam, Kyung-Soo
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.678-683
    • /
    • 2007
  • Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metallo-proteinase-9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular $Ca^{2+}$ mobilization, and thromboxane $A_2$ ($TXA_2$) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or $TXA_2$ synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular $Ca^{2+}$ mobilization and $TXA_2$ production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.

Spinach Saponin-Enriched Fraction Inhibits Platelet Aggregation in cAMP- and cGMP-Dependent Manner by Decreasing TXA2 Production and Blood Coagulation

  • Cho, Hyun-Jeong;Choi, Sun-A;Kim, Chun-Gyu;Jung, Tae-Sung;Hong, Jeong-Hwa;Rhee, Man-Hee;Park, Hye-Jin;Park, Hwa-Jin
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.218-223
    • /
    • 2011
  • In this study, we investigated the effect of spinach saponin-enriched fraction (SSEF) on collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation. SSEF inhibited collagen-induced platelet aggregation, and which was involved in the inhibition of thromboxane $A_2$ ($TXA_2$) production, an intracellular $Ca^{2+}$-agonist as an aggregation-inducing autacoidal molecule. In addition, SSEF significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonists as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that SSEF might inhibit $Ca^{2+}$-elevation and $TXA_2$ formation by increasing the production of $Ca^{2+}$-antagonistic molecules cAMP and cGMP. These mean that SSEF is a potent inhibitor of collagen-stimulated platelet aggregation. On the other hand, prothrombin time (PT) and activated partial thromboplastin time (APTT) were potently prolonged by SSEF. These findings suggest that SSEF prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that SSEF may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.

Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation (콜라겐으로 유도한 사람 혈소판 응집에 미치는 Scopoletin의 억제 효과)

  • Kwon, Hyuk-Woo;Shin, Jung-Hae;Park, Chang-Eun;Lee, Dong-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.34-41
    • /
    • 2019
  • Platelet aggregation is essential for the formation of a hemostatic plug in the case of blood vessel damage. On the other hand, excessive platelet aggregation may cause cardiovascular disorders, such as thrombosis, atherosclerosis, and myocardial infarction. Scopoletin, which found in the root of plants in the genus Scopolia or Artemisia, has anti-coagulation and anti-malaria effects. This study examined the effects of scopoletin on human platelet aggregation induced by collagen. Scopoletin had anti-platelet effects via the down-regulation of thromboxane $A_2$ ($TXA_2$) production and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), which are aggregation-inducing molecules produced in activated platelets. On the other hand, scopoletin increased both the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels, which are known as intracellular $Ca^{2+}$-antagonists and aggregation-inhibiting molecules. In particular, scopoletin increased the potently cAMP level more than cGMP, which led to suppressed fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in collagen-induced human platelet aggregation. In addition, scopoletin inhibited collagen-elevated adenosine triphosphate (ATP) release in a dose-dependent manner. The results suggest that aggregation amplification through granule secretion is inhibited by scopoletin. Therefore, scopoletin has potent anti-platelet effects and may have potential for the prevention of platelet-derived vascular diseases.

Inhibitory Effects of Cordycepin on Platelet Activation via Regulation of Cyclic Adenosine Monophosphate-downstream Pathway

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2017
  • Platelet activation is essential at the sites of vascular injury, which leads to hemostasis through adhesion, aggregation, and secretion process. However, potent and continuous platelet activation may be an important reason of circulatory disorders. Therefore, proper regulation of platelet activation may be an effective treatment for vascular diseases. In this research, inhibitory effects of cordycepin (3'-deoxyadenosine) on platelet activation were determined. As the results, cordycepin increased cAMP and cGMP, which are intracellular $Ca^{2+}$-antagonists. In addition, cordycepin reduced collagen-elevated $[Ca^{2+}]_i$ mobilization, which was increased by a cAMP-dependent protein kinase (PKA) inhibitor (Rp-8-Br-cAMPS), but not a cGMP-protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). Furthermore, cordycepin increased $IP_3RI$ ($Ser^{1756}$) phosphorylation, indicating inhibition of $IP_3$-mediated $Ca^{2+}$ release from internal store via the $IP_3RI$, which was strongly inhibited by Rp-8-Br-cAMPS, but was not so much inhibited by Rp-8-Br-cGMPS. These results suggest that the reduction of $[Ca^{2+}]_i$ mobilization is caused by the cAMP/A-kinase-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation. In addition, cordycepin increased the phosphorylation of VASP ($Ser^{157}$) known as PKA substrate, but not VASP ($Ser^{239}$) known as PKG substrate. Cordycepin-induced VASP ($Ser^{157}$) phosphorylation was inhibited by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS, and cordycepin inhibited collagen-induced fibrinogen binding to ${\alpha}IIb/{\beta}_3$, which was increased by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS. These results suggest that the inhibition of ${\alpha}IIb/{\beta}_3$ activation is caused by the cAMP/A-kinase-dependent VASP ($Ser^{157}$) phosphorylation. In conclusion, these results demonstrate that inhibitory effects of cordycepin on platelet activation were due to inhibition of $[Ca^{2+}]_i$ mobilization through cAMP-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation and suppression of ${\alpha}IIb/{\beta}_3$ activation through cAMP-dependent VASP ($Ser^{157}$) phosphorylation. These results strongly indicated that cordycepin might have therapeutic or preventive potential for platelet activation-mediated disorders including thrombosis, atherosclerosis, myocardial infarction, or cardiovascular disease.

Changes in Quality of Shiitake Mushroom(Lentinus edodes) by Different Drying Methods (건조방법에 따른 표고버섯의 품질변화)

  • Baek, Hyung-Hee;Kim, Dong-Man;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.145-148
    • /
    • 1989
  • Shiitake mushrooms were dried by hot air, far infrared and freeze dryers in order to compare qualities after drying. When hot air drying was performed with the four temperature variations ranged from $45\;to\;70^{\circ}C$, there was tendency to increase volume retention but decrease rehydration ratio, as drying temperature increased. And the largest amout of 5'-GMP was contained in mushroom dried at $50^{\circ}C$. For far infrared drying, volume retentions were lower but rehydration ratios were higher, as compared with hot air drying at the same temperature. In freeze drying, freezing rate had no influence on volume retention but rehydration ratio was highest value when frozen at $-18^{\circ}C$. As shelf temperature increased(drying rate increased), rehydration ratio increased. Also, contents of 5'-AMP, 5'-GMP and 5'-XMP increased with the increase of freezing rate and drying rate.

  • PDF

Smooth Muscle Relaxation by the Herbal Medicine Ssanghwatang associated with Nitric Oxide Synthase Activation and Nitric Oxide Production

  • Kim, Joong-Kil;Shim, Ha-Na;Lee, Seung-Hee;Yoo, Kwan-Suk;Song, Bong-Keun
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.74-83
    • /
    • 2006
  • Ssanghwatang (SHT) has been known to prove effective in the treatment for erectile dysfunction (ED), and its modified formula is widely used in clinical practice. However, its fundamental mechanism of action is not clearly known. It is well known that endothelial cells can achieve the relaxation of vascular smooth muscles by the release of nitric oxide (NO). NO is synthesized by the enzyme NO synthase (NOS) from L-arginine and oxygen. It is widely accepted that NO plays an important role in the relaxation of corpus cavernous smooth muscle and vasculature. In addition, in terms of the penile erection, the NO/cGMP pathway is more potent than the PCE1/cAMP pathway. The main purpose of the present study was to investigate the mechanism of the erectile effects of SHT by focusing on its direct effects on corpus cavernous smooth muscle cells. We investigated the NOS activity, nitrite concentration and cGMP levels in rat corpus cavernous smooth muscle cell lines activated by SHT extracts. Furthermore, we evaluated the effect of SHT extracts on penile smooth muscle relaxation following oral administration of SHT extract powder to rats by the dosage of 1 g/kg over fifteen days. As a result, we found that SHT stimulated NO release. NOS activity and cGMP levels were increased by SHT respectively. Furthermore, SHT relaxed the corpus cavernous smooth muscle. These results are consistent with the concept that penile erection by SHT is carried out through the NO/cGMP pathway. In conclusion, the present study shows that SHT increases the NOS activity, synthesizes NO and augments the cGMP, which mediates penile erection. Further determination of the SHT mechanism related with the NO/cGMP pathway strongly indicates that SHT can be used as a remedy for erectile impotence.

  • PDF