• Title/Summary/Keyword: c-KIT receptor

Search Result 44, Processing Time 0.023 seconds

Effect of Platelet-Activating Factor on Cyclic Nucleotide Level in Rat Uterine tissue during Preimplantation Period (흰쥐의 임신초기에 있어서 자궁 조직중 Cyclic Nucleotide의 변화 및 Platelet-Activating Factor의 영향에 관한 연구)

  • Park, Kyoung-Sik;Kwun, Jong-Kuk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.2
    • /
    • pp.133-142
    • /
    • 1991
  • This study was carried out to observe the change in uterine cyclic nucleotide level and the effect of PAF on cyclic nucleotides in uterine tissue in early pregnany in order to understand reciprocal relation ship between PAF and cyclic nucleotides in pregnancy in the rat. The test groups were injected intramuscularly with $1{\mu}g$ of PAF or 1.25mg of BN-52021 on day 0, 1, 2, 3, 4 and 5 of pregnancy. The level of cyclic nucleotide in removed uterine tissue was assayed by using cyclic nucleotides test kits. The results showed that the cyclic AMP content in uterine tissue of non-pregnant at pro-oestrus rat was $2.91{\pm}0.33$ pmol/mg protein which was lower than those of pregnant rat. The cyclic GMP content in uterine tissue of non-pregnant rat was $0.39{\pm}0.20$ pmol/mg pro-tein which was also lower than those of pregnant rats. The maximum level in cAMP was $5.92{\pm}1.72$ pmol/mg protein on day 3 and cGMP, $1.03{\pm}0.22$ pmol/mg protein on day 4. On each day of pregnancy, PAF induced the increased cAMP level ompared with that of intact rat. That was significant on day 0, 2 and 4 of pregnancy, p<0.05, on the other hand PAF receptor antagonist, BN-52021 ecreased cAMP level in uterine tisssue. PAF as well as BN-52021 had not an consistent effect on changes in cGMP level. These results suggest that cyclic nucleotide levels in uterine tissue ware increased during early pregnancy and PAF influences cAMP level in uterine rather than cGMP level during peri-implantation period, accordingly demonstrating a possible involvement of PAF in the regulation of implantation-related events through cAMP-mediated process.

  • PDF

Construction of Transgenic Silkworms Expressing Human Stem Cell Factor (hSCF) (인간 유래 Stem Cell Factor (hSCF) 재조합단백질이 발현되는 누에형질전환체 제작)

  • Kim, Sung-Wan;Yun, Eun-Young;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Kwon, O-Yu;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1726-1731
    • /
    • 2011
  • Human Stem Cell Factor (hSCF) is a cytokine that binds to the c-Kit receptor and plays an important role in hematopoiesis, spermatogenesis, and melanogenesis. To produce the human Stem Cell Factor (hSCF) recombinant protein, we constructed a germline transgenic silkworm using the piggyback vector. The expression of the hSCF gene was driven by the Drosophila heat shock protein 70 (dHsp70) promoter. 3XP3 promotor-driven EGFP was used as a marker which allowed us to rapidly distinguish the transgenic silkworm. A mixture of the donor and helper vector was micro-injected into 1,020 eggs of bivoltin silkworms, Keomokjam. We obtained approximately 22 G1 broods that were EGFP-positive. The expression of the hSCF gene in the transgenic silkworm was analyzed by SDS-PAGE and immunoblotting. Also, analysis of insertion sites into the silkworm genome using inverse PCR showed that exogenous DNA was inserted into the transgenic silkworm genome. These results show that successfully constructed transgenic silkworm expresses the hSCF recombinant protein.

Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes

  • Pan, Shifeng;Chen, Yongfang;Zhang, Lin;Liu, Zhuang;Xu, Xingyu;Xing, Hua
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.763-777
    • /
    • 2022
  • Objective: Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods: The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results: The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion: These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.

The Signal Transduction Mechanisms on the Intestinal Mucosa of Rat Following Irradiation (방사선조사후 백서소장점막에서 발생하는 신호전달체계에 관한 연구)

  • Yoo Jeong Hyun;Kim Sung Sook;Lee Kyung Ja;Rhee Chung Sik
    • Radiation Oncology Journal
    • /
    • v.15 no.2
    • /
    • pp.79-95
    • /
    • 1997
  • Purpose : Phospholipase C(PLC) isozymes play significant roles in signal transduction mechanism. $PLC-\gamma$ 1 is one of the key regulatory enzymes in signal transduction for cellular proliferation and differentiation. Ras oncoprotein, EGFR, and PKC are also known to be involved in cell growth. The exact mechanisms of these signal transduction following irradiation, however, were not clearly documented Thus, this study was Planned to determine the biological significance of PLC, ras oncoprotein, EGFR, and PKC in damage and regeneration of rat intestinal mucosa following irradiation. Material and Method : Sixty Sprague-Dawley rats were irradiated to entire body with a single dose of 8Gy. The rats were divided into S groups according to the sacrifice days after irradiation. The expression of PLC, ras oncoprotein, EGFR and PKC in each group were examined by the immunoblotting and immunohistochemistry. The histopathologic findings were observed using H&I stain, and the mitoses for the evidence of regeneration were counted using the light microscopy & PCNA kit. The Phosphoinositide(PI) hydrolyzing activity assay was also done for the indirect evaluation of $PLC-\gamma$ 1 activity. Results: In the immunohistochemistry , the expression of $PLC-{\beta}$ was negative for all grøups. The expression of $PLC-{\gamma}1$ was highest in the group III followed by group II in the proliferative zone of mucosa. The expression of $PKC-{\delta}1$ was strongly positive in group 1 followed by group II in the damaged surface epithelium. The above findings were also confirttled in the immunoblotting study. In the immunoblotting study, the expressions of $PLC-{\beta}$, $PLC-{\gamma}1$, and $PKC-{\delta}1$ were the same as the results of immunohis-tochemistry. The expression of ras oncoprctein was weakly positive in groups II, III and IV. The of EGFR was the highest in the group II, III, follwed by group IV and the expression of PKC was weakly positive in the group II and III. Conclusion: $PLC-{\gamma}1$ mediated signal transduction including ras oncoprotein, EGFR, and PKC play a significant role in mucosal regeneration after irradiation. $PLC-{\delta}1$ mediated signal transduction might have an important role in mucosal damage after irradiation. Further studies will be necessary to confirm the signal transduction mediating the $PKC-{\delta}1$.

  • PDF