• 제목/요약/키워드: c-Jun degradation

Search Result 237, Processing Time 0.025 seconds

Study on the Degradation of Pigskin Collagen Using Irradiation Technique (방사선조사를 이용한 돈피 콜라겐의 저분자화 연구)

  • Cho, Young-Jun;Seo, Jung-Eun;Kim, Yun-Ji;Lee, Nam-Hyouk;Hong, Sang-Pil;Kim, Young-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.588-593
    • /
    • 2006
  • This study was intended to observe possibility of which radiation technique can be used for oligopeptide production from pigskin collagen to reduce environmental pollution in processing and simplify the processing steps. Raw pigskin was ground using chopper, and then defatted in acetone cooled at $-20^{\circ}C$ freezer. Defatted dried pigskin was irradiated at 20, 40, 60, 100, 150, 200, 250, and 300 kGy using Co-60 gamma rays irradiator. With irradiation doses, the amount of soluble proteins increased, and the viscosity and turbidity of soluble proteins decreased, which could be clue of that irradiation degrade high molecular proteins directly. pH of soluble proteins from defatted pigskin increased in the sample above 150 kGy, and low molecular weight components (below 24 kDa) in SDS-PAGE increased. From gel permeation chromatography of the hydrolysates of pigskin irradiated at 300 kGy showed the major peak of 9,000, 8,200, 860, and 170 Da.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

Distribution of Protease Inhibitors from Fish Eggs as Seafood Processing Byproducts (어류 알의 Protease Inhibitor 활성 분포)

  • Ji, Seong-Jun;Lee, Ji-Sun;Shin, Joon-Ho;Park, Kwon-Hyun;Kim, Jin-Soo;Kim, Kyoung-Sub;Heu, Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.1
    • /
    • pp.8-17
    • /
    • 2011
  • To identify and examine the distribution of proteolytic inhibitory activity in crude extracts from fish eggs, and to determine the applicability of these protease inhibitors as anti-degradation agents in surimi-based products and fish meat, we compared the inhibitory activities of various extracts from fish eggs to those of commercial proteases, such as trypsin and papain. We used the optimal conditions for the screening of trypsin activity: 30 ug/uL of 0.1% trypsin and 0.6 mM Na-benzoyl-L-arginine-p-nitroanilide (BAPNA) with a pH of 8.0 at $40^{\circ}C$ for 60 min. The activities of papain and four commercial proteases were investigated after mixing with 100 ug/uL enzymes and 0.3% casein with a pH of 8.0 at $40^{\circ}C$ for 60 min. We performed a screening assay to detect the inhibitory activity (%) of crude extracts from eight species of fish eggs against the target proteases trypsin and papain. The assay revealed a wide distribution of trypsin and papain inhibitors in fish eggs. The specific inhibitory activities (11.6.28.6 U/mg) of crude extracts from fish eggs against trypsin and BAPNA substrate were higher than that (0.64 U/mg) of egg whites, used as a commercial inhibitor. The inhibitory activities of crude extracts from fish eggs against trypsin, and of egg whites against casein substrate (1.94.4.51 U/mg), were higher than those of papain (0.24.1.57 U/mg) and commercial protease (0.04.0.32 U/mg). The extracts from fish eggs were rich in protease inhibitors that exhibited strong inhibitory activity against trypsin, a serine protease, and papain, a cysteine protease.

Complete genome sequence of Comamonas sp. NLF-7-7 isolated from biofilter of wastewater treatment plant (폐수처리장의 바이오 필터로부터 분리된 Comamonas sp. NLF-7-7 균주의 유전체 염기서열 해독)

  • Kim, Dong-Hyun;Han, Kook-Il;Kwon, Hae Jun;Kim, Mi Gyeong;Kim, Young Guk;Choi, Doo Ho;Lee, Keun Chul;Suh, Min Kuk;Kim, Han Sol;Lee, Jung-Sook;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.309-312
    • /
    • 2019
  • Comamonas sp. NLF-7-7 was isolated from biofilter of wastewater treatment plant. The whole-genome sequence of Comamonas sp. NLF-7-7 was analyzed using the PacBio RS II and Illumina HiSeqXten platform. The genome comprises a 3,333,437 bp chromosome with a G + C content of 68.04%, 3,197 total genes, 9 rRNA genes, and 49 tRNA genes. This genome contained pollutants degradation and floc forming genes such as sulfur oxidization pathway (SoxY, SoxZ, SoxA, and SoxB) and floc forming pathway (EpsG, EpsE, EpsF, EpsG, EpsL, and glycosyltransferase), respectively. The Comamonas sp. NLF-7-7 can be used to the purification of wastewater.

Carrageenan-Based Liquid Bioadhesives for Paper and Their Physical Properties (카라기난 기반 액상형 바이오 종이 접착제의 제조 및 물성에 관한 연구)

  • Oh, Seung-Jun;Han, Won-Sik;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • There is a growing demand for natural materials to replace adhesives based on volatile organic compounds (VOCs). However, the exclusion of VOCs from the manufacturing process leads to difficulties in manufacturing, and reduction in productivity and preservability. In this paper, we report the manufacture of natural bioadhesives using the carrageenan component of seaweed. λ-carrageenan, isolated from the extracted total carrageenan, was used to prepare a highly stable adhesive for paper. The resulting composition was 52.0 ± 1.0% λ-carrageenan, 30.5 ± 0.5% Polyvinylpyrrolidone, 1.0 ± 0.05% ethylhexylglycerin, 1.5 ± 0.05% glycerin, 13.5 ± 0.5% dextrine, and 0.6 ± 0.05% food-grade antifoam emulsion. The viscosity was found to be 1.13 ± 0.07 × 105 cP (25℃), UV degradation occurred at pH6.22, drying rate was 15min, △b* was -10.79, and △E* ab was 8.18. The bioadhesive showed an excellent adhesion strength of 44.63 kgf/cm2. Thus this adhesive showed excellent fungal resistance and good adhesive persistence, without the presence of total volatile organic compounds (TVOC), formaldehyde (HCHO), and heavy metals.

A Fibrinolytic Enzyme from the Medicinal Mushroom Cordyceps militaris

  • Kim Jae-Sung;Sapkota Kumar;Park Se-Eun;Choi Bong-Suk;Kim Seung;Hiep Nguyen Thi;Kim Chun-Sung;Choi Han-Seok;Kim Myung-Kon;Chun Hong-Sung;Park Yeal;Kim Sung-Jun
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.622-631
    • /
    • 2006
  • In this study we purified a fibrinolytic enzyme from Cordyceps militaris using a combination of ion-exchange chromatography on a DEAE Sephadex A-50 column, gel filtration chromatography on a Sephadex G-75 column, and FPLC on a HiLoad 16/60 Superdex 75 column. This purification protocol resulted in a 191.8-fold purification of the enzyme and a final yield of 12.9 %. The molecular mass of the purified enzyme was estimated to be 52 kDa by SDS-PAGE, fibrin-zymography, and gel filtration chromatography. The first 19 amino acid residues of the N-terminal sequence were ALTTQSNV THGLATISLRQ, which is similar to the subtilisin-like serine protease PR1J from Metarhizium anisopliae var. anisopliase. This enzyme is a neutral protease with an optimal reaction pH and temperature of 7.4 and $37^{\circ}C$, respectively. Results for the fibrinolysis pattern showed that the enzyme rapidly hydrolyzed the fibrin $\alpha$-chain followed by the $\gamma$-$\gamma$ chains. It also hydrolyzed the $\beta$-chain, but more slowly. The A$\alpha$, B$\beta$, and $\gamma$ chains of fibrinogen were also cleaved very rapidly. We found that enzyme activity was inhibited by $Cu^{2+}$ and $Co^{2+}$, but enhanced by the additions of $Ca^{2+}$ and $Mg^{2+}$ ions. Furthermore, fibrinolytic enzyme activity was potently inhibited by PMSF and APMSF. This enzyme exhibited a high specificity for the chymotrypsin substrate S-2586 indicating it's a chymotrypsin-like serine protease. The data we present suggest that the fibrinolytic enzyme derived from the edible and medicinal mushroom Cordyceps militaris has fibrin binding activity, which allows for the local activation of the fibrin degradation pathway.

Degradation of TPHs, TCE, PCE, and BTEX Compounds for NAPLs Contaminated Marine Sediments Using In-Situ Air Sparging Combined with Vapor Extraction (증기추출법과 결합된 공기주입법을 이용한 비수용성액체 해양퇴적물의 TPHs, TCE, PCE 및 BTEX 정화)

  • Lee, Jun-Ho;Han, Sun-Hyang;Park, Kap-Song
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.425-444
    • /
    • 2013
  • This study was carried out in order to determine the remediation of total petroleum hydrocarbons (TPHs), trichloroethylene (TCE), perchloroethylene (PCE), benzene, toluene, ethylbenzene and xylenes (BTEX) compounds for non-aqueous phase liquids (NAPLs) using in-situ air sparging (IAS) / vapor extraction (VE) with the marine sediments of Mandol, Hajeon, Sangam and Busan, South Korea. Surface sediment of Mandol area had sand characteristics (average particle size, 1.789 ${\Phi}$), and sandy silt characteristics (average particle size, 5.503 ${\Phi}$), respectively. Sangam surface sediment had silt characteristics (average particle size, 5.835 ${\Phi}$). Sediment characteristics before experiment in the Busan area showed clay characteristics (average particle size, 8.528 ${\Phi}$). TPHs level in the B1 column of Mandol, Hajeon, Sangam, and Busan sediments were 2,459, 6,712, 4,348, and 14,279 ppm. B2 (3 L/min) to B5 (5 L/min) columns reduced 99.5% to 100.0% of TCE and 93.2% to 100.0% of PCE. Removal rates of TCE, PCE, and BTEX are closely correlated (0.90-0.99) with particle sizes and organic carbon concentrations. However, TPHs (0.76) and benzene (0.71) showed the poorer but moderate correlations with the same parameters.

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

Development of a Carbohydrate-based Fat Replacement for Use in Bread Making (제빵용 지방 대체제 개발)

  • Yoon, Seong-Jun;Jo, Nam-Ji;Jeong, Yoon-Hwa
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.1032-1038
    • /
    • 2008
  • This study was conducted to develope carbohydrate-based fat replacement for use in the preparation of non-(trans) fatty acid and low-caloric bread. Characteristics such as leavening height of batter, pH, titratable acidity, specific volume, sensory evaluation, shelf life and texture change of bread made using 11 types of carbohydrate-based fat replacements were measured. The 11 carbohydrate-based fat replacers (No. $1{\sim}11$) were prepared using maltodextrin as a base, and different ratios of calcium sulfate, ascorbic acid, sodium stearoyl lactylate and methyl cellulose. The pH was lowered and the total titratable acidity was increased after four hours of fermentation in the control and the samples of dough that contained the fat replacement. In addition, the leavening height of the control was 5.0cm (maximum) after two hours of fermentation and 4.6 cm after four hours of fermentation, which was similar to the heights observed when No.$9{\sim}11$ were evaluated. When the specific volume of the bread was evaluated, the 3% of fat replacement No. 10 produced the best results. When taste was evaluated, there was no significant difference between the control and the bread produced using 1% No. 10, however, there was a significant difference between the control and all samples that contained 2% or more of the fat replacement. Furthermore, the addition of a greater concentration of the fat replacer resulted in a greater moisture. However, there were no significant differences in the color of the control and any of the samples. Additionally, measurement of the firmness of the bread during four days of storage at $25^{\circ}C$ revealed that it decreased as the concentration of fat replacer increased. In addition, the sample that contained 3% of sample No. 10 showed a firmness of 18kgf after three days of storage, while the control showed a firmness of 18kg after two days, which indicates that the degradation of the bread that contained the fat replacer was delayed by one day. The bread made using fat replacers was found to have a better taste, flavor, color, texture and firmness than the control, and the best results were observed in response to the addition of 3% of replacement No. 10. The results of this study will be useful in the production of non-(trans) fatty acid, low caloric bread.

  • PDF

Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry

  • Dong, Wei-Wei;Zhao, Jinhua;Zhong, Fei-Liang;Zhu, Wen-Jing;Jiang, Jun;Wu, Songquan;Yang, Deok-Chun;Li, Donghao;Quan, Lin-Hu
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.540-547
    • /
    • 2017
  • Background: In general, after Panax ginseng is administered orally, intestinal microbes play a crucial role in its degradation and metabolization process. Studies on the metabolism of P. ginseng by microflora are important for obtaining a better understanding of their biological effects. Methods: In vitro biotransformation of P. ginseng extract by rat intestinal microflora was investigated at $37^{\circ}C$ for 24 h, and the simultaneous determination of the metabolites and metabolic profile of P. ginseng saponins by rat intestinal microflora was achieved using LC-MS/MS. Results: A total of seven ginsenosides were detected in the P. ginseng extract, including ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, and Rd. In the transformed P. ginseng samples, considerable amounts of deglycosylated metabolite compound K and Rh1 were detected. In addition, minimal amounts of deglycosylated metabolites (ginsenosides Rg2, F1, F2, Rg3, and protopanaxatriol-type ginsenosides) and untransformed ginsenosides Re, Rg1, and Rd were detected at 24 h. The results indicated that the primary metabolites are compound K and Rh1, and the protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides. Conclusion: This is the first report of the identification and quantification of the metabolism and metabolic profile of P. ginseng extract in rat intestinal microflora using LC-MS/MS. The current study provided new insights for studying the metabolism and active metabolites of P. ginseng.