• 제목/요약/키워드: c-9,t-11 isomer

검색결과 16건 처리시간 0.019초

중수소화(重水素化), Pentafluorobenzyl화(化)와 GLC-Mass Spectrometry에 의한 Conjugate Trienoic Acid함유(含有) Triacylglycerol 분자종(分子種)의 입체특이적 분석(分析) (Stereospecific Analysis of the Molecular Species of the Triacylglycerols Containing Conjugate Trienoic Acids by GLC-Mass Spectrometry in Combination with Deuteration and Pentafluorobenzyl Derivatization Techniques)

  • 우효경;김성진;조용계
    • 한국응용과학기술학회지
    • /
    • 제18권3호
    • /
    • pp.214-232
    • /
    • 2001
  • CTA ester bonds in TG molecules were not attacked by pancreatic lipase and lipases produced by microbes such as Candida cylindracea, Chromobacterium viscosum, Geotricum candidium, Pseudomonas fluorescens, Rhizophus delemar, R. arrhizus and Mucor miehei. An aliquot of total TG of all the seed oils and each TG fraction of the oils collected from HPLC runs were deuterated prior to partial hydrolysis with Grignard reagent, because CTA molecule was destroyed with treatment of Grignard reagent. Deuterated TG (dTG) was hydrolyzed partially to a mixture of deuterated diacylglycerols (dDG), which were subsequently reacted with (S)-(+)-1-(1-naphthyl)ethyl isocyanate to derivatize into dDG-NEUs. Purified dDG-NEUs were resolved into 1, 3-, 1, 2- and 2, 3-dDG-NEU on silica columns in tandem of HPLC using a solvent of 0.4% propan-1-o1 (containing 2% water)-hexane. An aliquot of each dDG-NEU fraction was hydrolyzed and (fatty acid-PFB ester). These derivatives showed a diagnostic carboxylate ion, $(M-1)^{-}$, as parent peak and a minor peak at m/z 196 $(PFB-CH_{3})^{-}$ on NICI mass spectra. In the mass spectra of the fatty acid-PFB esters of dTGs derived from the seed oils of T. kilirowii and M. charantia, peaks at m/z 285, 287, 289 and 317 were observed, which corresponded to $(M-1)^{-}$ of deuterized oleic acid ($d_{2}-C_{18:0}$), linoleic acid ($d_{4}-C_{18:0}$), punicic acid ($d_{6}-C_{18:0}$) and eicosamonoenoic acid ($d_{2}-C_{20:0}$), respectively. Fatty acid compositions of deuterized total TG of each oil measured by relative intensities of $(M-1)^-$ ion peaks were similar with those of intact TG of the oils by GLC. The composition of fatty acid-PFB esters of total dTG derived from the seed oils of T. kilirowii are as follows; $C_{16:0}$, 4.6 mole % (4.8 mole %, intact TG by GLC), $C_{18:0}$, 3.0 mole % (3.1 mole %), $d_{2}C_{18:0}$, 11.9 mole % (12.5 mole %, sum of $C_{18:1{\omega}9}$ and $C_{18:1{\omega}7}$), $d_{4}-C_{18:0}$, 39.3 mole % (38.9 mole %, sum of $C_{18:2{\omega}6}$ and its isomer), $d_{6}-C_{18:0}$, 41.1 mole % (40.5 mole %, sum of $C_{18:3\;9c,11t,13c}$, $C_{18:3\;9c,11t,13r}$ and $C_{18:3\;9t,11t,13c}$), $d_{2}-C_{20:0}$, 0.1 mole % (0.2 mole % of $C_{20:1{\omega}9}$). In total dTG derived from the seed oils of M. charantia, the fatty acid components are $C_{16:0}$, 1.5 mole % (1.8 mole %, intact TG by GLC), $C_{18:0}$, 12.0 mole % (12.3 mole %), $d_{2}-C_{18:0}$, 16.9 mole % (17.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$, 11.0 mole % (10.6 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$, 58.6 mole % (57.5 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3\;9c,11t,13c}$). In the case of Aleurites fordii, $C_{16:0}$; 2.2 mole % (2.4 mole %, intact TG by GLC), $C_{18:0}$; 1.7 mole % (1.7 mole %), $d_{2}-C_{18:0}$; 5.5 mole % (5.4 mole %, sum of $C_{18:1{\omega}9}$), $d_{4}-C_{18:0}$ ; 8.3 mole % (8.5 mole %, sum of $C_{18:2{\omega}6}$), $d_{6}-C_{18:0}$; 82.0 mole % (81.2 mole %, sum of $C_{18:3\;9c,11t,13t}$ and $C_{18:3 9c,11t,13c})$. In the stereospecific analysis of fatty acid distribution in the TG species of the seed oils of T. kilirowii, $C_{18:3\;9c,11t,13r}$ and $C_{18:2{\omega}6}$ were mainly located at sn-2 and sn-3 position, while saturated acids were usually present at sn-1 position. And the major molecular species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ were predominantly composed of the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$, and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$, respectively, and the minor TG species of $(C_{18:2{\omega}6})_{2}(C_{18:3\;9c,11t,13c})$ and $ (C_{16:0})(C_{18:3\;9c,11t,13c})_{2}$ mainly comprised the stereoisomer of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13c}$ and $sn-1-C_{16:0}$, $sn-2-C_{18:3\;9c,11t,13c}$, $sn-3-C_{18:3\;9c,11t,13c}$. The TG of the seed oils of Momordica charantia showed that most of CTA, $C_{18:3\;9c,11t,13r}$, occurred at sn-3 position, and $C_{18:2{\omega}6}$ was concentrated at sn-1 and sn-2 compared to sn-3. Main TG species of $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{18:0})(C_{18:3\;9c,11t,13t})_{2}$ were consisted of the stereoisomer of $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$, respectively, and minor TG species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})_{2}$ and $(C_{18:1{\omega}9})(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13c})$ contained mostly $sn-1-C_{18:2{\omega6}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:2{\omega}6}$, $sn-3-C_{18:3\;9c,11t,13t}$. The TG fraction of the seed oils of Aleurites fordii was mostly occupied with simple TG species of $(C_{18:3\;9c,11t,13t})_{3}$, along with minor species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_{2}$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$. The sterospecific species of $sn-1-C_{18:2{\omega}6}$, $sn-2-C_{18:3\;9c,11t,13t}$, sn-3-C_{18:3\;9c,11t,13t}$, $sn-1-C_{18:1{\omega}9}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ and $sn-1-C_{16;0}$, $sn-2-C_{18:3\;9c,11t,13t}$, $sn-3-C_{18:3\;9c,11t,13t}$ are the main stereoisomers for the species of $(C_{18:2{\omega}6})(C_{18:3\;9c,11t,13t})_2$, $(C_{18:1{\omega}9})(C_{18:3\;9c,11t,13t})_{2}$ and $(C_{16:0})(C_{18:3\;9c,11t,13t})$, respectively.

Feeding Unprotected CLA Methyl Esters Compared to Sunflower Seeds Increased Milk CLA Level but Inhibited Milk Fat Synthesis in Cows

  • Dohme-Meier, F.;Bee, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권1호
    • /
    • pp.75-85
    • /
    • 2012
  • An experiment was conducted to compare the effect of the same amount of 18:2 offered either as 18:2n-6 or as a mixture of unprotected 18:2c9t11 and 18:2t10c12 on feed intake, milk components as well as plasma and milk fatty acid profile. Fifteen cows were blocked by milk yield and milk fat percentage and within block assigned randomly to 1 of 3 treatments (n = 5). Each cow passed a 12-d adjustment period (AP) on a basal diet. After the AP cows received 1 of 3 supplements during an 18-d experimental period (EP). The supplements contained either 1.0 kg ground sunflower seeds (S), 0.5 kg conjugated linoleic acid (CLA)-oil (C) or 0.75 kg of a mixture of ground sunflower seeds and CLA-oil (2:1; SC). All 3 supplements contained the same amount of 18:2 either as CLA (${\Sigma}18$:2c9t11+18:2t10c12, 1:1) or as 18:2c9c12. During the last 2 d of AP and the last 4 d of EP feed intake and milk yield were recorded daily and milk samples were collected at each milking. Blood samples were collected from the jugular vein on d 11 of AP and d 15 and 18 of EP. The 18:2 intake increased in all treatments from AP to EP. Regardless of the amount of supplemented CLA, the milk fat percentage decreased by 2.35 and 2.10%-units in treatment C and SC, respectively, whereas in the treatment S the decrease was with 0.99%-unit less pronounced. Thus, C and SC cows excreted daily a lower amount of milk fat than S cows. The concentration of trans 18:1 in the plasma and the milk increased from AP to EP and increased with increasing dietary CLA supply. While the concentration of 18:2c9t11 and 18:2t10c12 in the plasma and that of 18:2t10c12 in the milk paralleled dietary supply, the level of 18:2c9t11 in the milk was similar in C and CS but still lower in S. Although the dietary concentration of CLA was highest in treatment C, the partial replacement of CLA by sunflower seeds had a similar inhibitory effect on milk fat synthesis. Comparable 18:2c9t11 levels in the milk in both CLA treatments implies that this isomer is subjected to greater biohydrogenation with increasing supply than 18:2t10c12. The fact that unprotected 18:2t10c12 escaped biohydrogenation in sufficient amounts to affect milk fat synthesis reveals opportunities to develop feeding strategies where reduced milk fat production is desirable or required by the metabolic state of the cow.

Conjugated Linoleic Acid가 대장암 세포인 HT-29의 증식에 미치는 영향 (Effect of Conjugated Linoleic Acid on the Proliferation of the Human Colon Cancer Cell Line, HT-29)

  • 김은지;조한진;김석종;강영희;하영래;윤정한
    • Journal of Nutrition and Health
    • /
    • 제34권8호
    • /
    • pp.896-904
    • /
    • 2001
  • Conjugated linoleic acid(CLA) is a group of positional and geometric isomers of linoleic acid(LA) and exhibits anticarcinogenic activity in multiple experimental animal models. Cis-9,trns-11(c9t11) and trans-10,cis-12(t10c12) CLA are the principal isomers found in foods. The present study was performed to determine whether CLA and the two isomers inhibits HT-29 cell proliferation and to assess whether such an effect was related to changes in secretion of eicosanoids. Cells were incubated in serum-free medium with various concentrations(0 to 20$\mu$M) of CLA or LA. CLA inhibited cell proliferation in a dose-dependent manner, with maximal inhibition(70 $\pm$ 1%) observed at 20$\mu$M concentration after 96 hours. However, LA had no effect at the same concentration range. To compare the ability of c9f11 and t10c12 to inhibit cell proliferation, cells were incubated with increasing concentrations(0 to 4$\mu$M) of these isomers. T10c12 inhibited cell proliferation in a dose-dependent manner. A 66 $\pm$ 2% decrease in cell number was observed within 96 hours after addition of 4$\mu$M t10c12. By contrast, c9t11 had no effect. The concentrations of CLA and the two isomers in the plasma membrane were increased when they were added to the incubation medium. However, they did not alter the levels of arachidonic acid in plasma membrane. To assess whether the proliferation inhibiting effect of CLA was related to changes in eicosanoid production, prostaglandin E$_2$(PGE$_2$) and leukotriene B$_4$(LTB$_4$) concentrations in conditioned media were estimated by a competitive enzyme immunoassay. Both CLA and t10c12 increased the production of materials reactive to PGE$_2$ and LTB$_4$ antibodies in a dose-dependent manner. By contrast, c9t11 had no effect. These results indicate that inhibition of HT-29 cell proliferation by CLA is attributed to the effect of the t10v12 isomer. The materials reactive to PGE$_2$ and LTB$_4$ antibodies may inhibit growth stimulatory effect of arachidonic acid-derived eicosanoids on HT-29 cell proliferation.

  • PDF

우레아 분별된 들기름 가수 분해물을 이용한 Conjugated Linolenic Acid(CLnA)의 합성 (Preparation of Conjugated Linolenic Acid from Urea Fractionated Perilla Seed Oil Hydrolysate)

  • 이경수;신정아;이기택
    • 한국식품영양과학회지
    • /
    • 제40권12호
    • /
    • pp.1734-1742
    • /
    • 2011
  • 본 실험에서는 들기름에 약 60%로 존재하는 ${\alpha}$-linolenic acid를 알칼리 이성질화 반응을 이용하여 CLnA(conjugated linolenic acid)와 CLA(conjugated linoleic acid)를 생산하고자 하였다. 들기름을 가수분해한 뒤에 10분에서 6시간까지의 반응시간과 5%에서 60%까지의 NaOH 농도에서 CLnA와 CLA의 생성을 표준물질과 함께 GC와 spectrophotometer를 이용하여 확인하였다. 시간에 따른 CLnA와 CLA 함량 변화는 나타나지 않았으나, NaOH 농도가 증가함에 따라서 CLnA와 CLA가 유의적으로 증가하는 경향을 보였다. 반응조건 중, 20% KOH, $180^{\circ}C$, 1시간 반응에서 14.5%와 14%의 CLnA와 CLA의 함량을 나타냈으며, 42.2%의 C18:3 conjugated 이성질체가 생성되었다. 이성질체를 확인하기 위해 GC-MS 그리고 FT-IR을 이용한 실험을 수행하였다. GC-MS의 ion peak 분석 결과, conjugated 형태에서만 특징적으로 나타나는 m/z=91 ion peak를 확인할 수 있었고, CLA와 CLnA의 분자량이 C18:2와 C18:3과 일치하는 것을 확인할 수 있었다. 그리고 NIST Library에서 검색된 methyl 9c, 11t-CLA, methyl 10t, 12c-CLA와 methyl 9cis, 11trans, 13trans-octadecatrienoate의 결과와 일치하는 ion peak를 형성하였다. 이 외의 이성질체는 FT-IR 분석 결과, 높은 trans fatty acid 함량을 보여 알칼리 이성질화 반응 시, $180^{\circ}C$의 높은 열에 반응을 하여 trans 형태의 conjugated form이 다량 생성된 것으로 사료된다. conjugated 이성질체의 생성 양을 높이기 위해 들기름 가수분해물을 우레아 분별을 한 뒤에, ${\alpha}$-linolenic acid의 함량을 70%까지 높인 뒤에 알칼리 이성질화 반응을 수행한 결과 CLnA의 생성 양이 16.6%까지 증가한 것을 확인할 수 있었다. 그러나 CLnA 이외의 conjugated 지방산 함량의 변화는 없었다.

Soxhlet 추출법에 의한 가공 식품의 Trans 지방산 정량 (Quantification of Trans Fatty Acids in Processed Foods by Soxhlet Extraction Method)

  • 노경희;김소희;송영선
    • 한국식품영양과학회지
    • /
    • 제33권9호
    • /
    • pp.1529-1536
    • /
    • 2004
  • 한국인 상용 가공식품의 trans 지방산 함량에 대한 기초자료를 구축하기 위해 한국인의 상용 가공식품 중 마가린 6종, 쇼트닝 2종, 라드 2종, 햄버거 4종, 도너츠 4종, 식빵 2종, 구운 과자 4종, 유탕 스낵 10종, 초콜렛 6종, 땅콩제품 4종, 전자렌지용 팝콘 2종, 닭튀김 4종, 감자튀김 4종, 치즈 2종 등 총 56종을 선정하여 Soxhlet 추출 방법에 의한 총 지방 함량과 ATR-IR 방법에 의해 trans 지방산 함량을 분석한 후 마가린 6종, 쇼트닝 2종 및 라드 2종 등 총 10종의 식품을 GC/MS로 trans 지방산 함량 및 이성체를 확인하였다. IR 분석에 의한 마가린의 총 지방 중 trans 지방산 함량은 5.03~32.73%인데 반해 쇼트닝은 1.98~11.33%, 라드는 1.70~1.96% 함유하고 있었다. 햄버거가 0~5.43%, deep frying류인 도너츠가 0.74~11.10%였다. 구운 과자의 trans 지방산 함량이 7.37~26.54%인 반면 쵸코렛에서는 검출되지 않았다. 닭튀김의 trans 지방산 함량이 0.44~14.85%였으며, 감자튀김은 5.18~27.01%로 상대적으로 높은 함량을 보였다. 치즈의 trans 지방산 함량은 11.34~12.88%이었으나 바싹한 과자와 쵸코렛에서는 trans 지방산 함량이 검출되지 않았다. 1회 섭취 분량 중에 trans 지방산을 2 g 정도를 함유하고 있는 식품에는 도너츠, 유탕스낵(tortilla), 전자렌지용 팝콘, 감자 튀김 등이 있다. GC/MS 방법에 의한 마가린의 총 지방 중 trans 지방산 함량은 8.27~28.53%, 쇼트닝은 8.81~9.17%, 라드는 6.03~8.00%를 함유하고 있었다. 마가린의 trans 지방산 이성체로는 C18:1t의 함량이 총 이성체 중 70.03%를 차지하였으며 쇼트닝과 라드는 C18:1t과 C18:2t의 함량이 각각 50.45와 37.64%, 32.43%와 47.37%였다. C18:1t의 함량이 현저히 높은 마가린의 경우 GC/MS 방법보다는 IR 방법에서 trans 지방산 함량이 높은 것으로 나타났으며, C18:2t과 C18:3t의 함량이 높은 쇼트닝과 라드의 경우 상대적으로 GC/MS 방법에서 IR 방법에 비해 높은 trans 지방산 함량을 보였다. 두 방법 간의 상관성은 $r^2$=0.91이었다.

Conjugated Linoleic Acid (CLA)와 그 이성체가 전립선 암세포의 증식에 미치는 영향 (The Effect of Conjugated Linoleic Acid and Its Isomers on the Proliferation of Prostate TSU-Prl Cancer Cells)

  • 오윤신;김은지;김종우;김우경;이현숙;윤정한
    • Journal of Nutrition and Health
    • /
    • 제35권2호
    • /
    • pp.192-200
    • /
    • 2002
  • Conjugated linoleic acid (CLA) is a collective term for positional and geometric isomers of octadecadienoic acid in which the double bonds are conjugated. CLA has anticancer activity in a variety of animal cancer models, and cis-9, trans-11 (c9t11) and trans-10, cis-12(t10c12) CLA are the most predominant isomers present in the synthetic preparations utilized in these animal studies. To compare the ability of c9t11, t10c12 and an isomeric mixture of CLA to inhibit TSU-Prl cell growth, cells were incubated in a serum-free medium with various concentrations of these fatty acids. The isomeric mixture inhibited cell growth in a dose-dependent manner (1-3 $\mu$M) with a 41 $\pm$ 1% inhibition observed at 3 $\mu$M concentration after 48 hours. T10c12 also inhibited cell proliferation in a dote-dependent manner, However, the efficacy and potency of this isomer was much greater than that of the isomeric mixture with a 49 $\pm$ 2% inhibition observed at 0.3 $\mu$M concentration after 48 hours. By contrast, c9t11 slightly increased cell proliferation. To determine whether the growth-inhibiting effect of CLA is related to the changes in production of insulin-like growth factors (IGF) and IGF-binding proteins (IGFBP) by these cells, serum-free conditioned media were collected. Immunoblot analysis of conditioned media using a monoclonal anti-IGF-II antibody showed that both the isomeric mixture and t10c12 inhibited secretion of both mature 7,500 Mr and higher Mr forms of pro IGF-II, whereas c9t11 had no effect. Ligand blot analysis with 125I-IGF-II revealed the presence of two types of IGFBPs : 24,000 Mr IGFBP-4 and 30,000 Mr IGFBP-6. The production of IGFBP-4 slightly decreased at the highest concentrations of the isomeric mixture and t10c12. These results indicate that CLA inhibits human prostate cancer cell growth, an effect largely due to the action of t10c12. The growth inhibition may result, at least in part, from decreased production of IGF-II and IGFBP-4 by these cells.