• Title/Summary/Keyword: by-product%2C Al-O

Search Result 89, Processing Time 0.034 seconds

Convergent Study of Aluminum Anodizing Method on the Thermal Fatigue (열 피로에 미치는 알루미늄 양극산화 제조방법의 융합연구)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.169-173
    • /
    • 2016
  • Anodic oxidation of aluminum has a sulfuric acid method and a oxalic acid method. Sulfuric acid concentration of the sulfuric acid method is 15~20 wt%. In the case of soft anodizing used in the $20{\sim}30^{\circ}C$ range, and voltage is the most used within a DC voltage 13~15V. In the case of hard anodizing used in the $0{\sim}-5^{\circ}C$ range. An aluminum oxide layer is made using sulfuric acid and oxalic acid. In this study, thermal fatigue of aluminum oxide layer which is made using sulfuric acid and oxalic acid is compared. Crack generating temperature of a sulfuric acid method and a oxalic acid method is $500^{\circ}C$ and $600^{\circ}C$. Thermal fatigue of aluminum oxide layer which is made using oxalic acid is better than thermal fatigue of aluminum oxide layer which is made using sulfuric acid. The characteristic of thermal fatigue can be explained by using thermal expansion coefficient of Al and Al2O3 and manufacturing temperature on Al anodizing. It was made possible through the convergent study to propose the manufacturing method of the anodic oxidation product used at a high temperature.

Characteristics of Manufacturing for Special Cement Using High Chlorine by-product (고염소 부산물을 이용한 특수시멘트 제조 특성)

  • Moon, Kiyeon;Cho, Jinsang;Choi, Moonkwan;Cho, Kyehong
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.68-75
    • /
    • 2021
  • This study aims to investigate the manufacturing process of calcium chloride-based special cement, i.e., CCA (calcium chloro aluminate, C11A7·CaCl2), which uses limestone, by using one type of random industrial by-product, domestic coal ash, cement kiln dust. The manufacturing process of was examined in detail, and the results suggested that the amount of CCA synthesized increased with an increase in the firing temperature. The manufacturing process of CCA was investigated at 1200℃, which was determined as the optimum firing temperature. The results showed that in general, the amount of CCA synthesized tended to increase with an increase in the firing time; however, the clinker melted when the firing time was more than 30 min, thereby suggesting that a firing time of less than 20 min would be suitable for the clinkering process. The optimal firing conditions for manufacturing CCA were obtained as follows: heating rate of 10 ℃/min, firing temperature of 1200 ℃, and holding time of 20 min. The results also suggest that manufacturing CCA will be easier when high chlorine-containing cement kiln dust is used.

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

Bias Voltage Dependence of Magnetic Tunnel Junctions Comprising Double Barriers and CoFe/NiFeSiB/CoFe Free Layer (CoFe/NiFeSiB/CoFe 자유층을 갖는 이중장벽 자기터널접합의 바이어스전압 의존특성)

  • Lee, S.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.120-123
    • /
    • 2007
  • The typical double-barrier magnetic tunnel junction (DMTJ) structure examined in this paper consists of a Ta 45/Ru 9.5/IrMn 10/CoFe7/$AlO_x$/free layer/AlO/CoFe 7/IrMn 10/Ru 60 (nm). The free layer consists of an $Ni_{16}Fe_{62}Si_8B_{14}$ 7 nm, $Co_{90}Fe_{10}$ (fcc) 7 nm, or CoFe $t_1$/NiFeSiB $t_2$/CoFe $t_1$ layer in which the thicknesses $t_1$ and $t_2$ are varied. The DMTJ with an NiFeSiB-free layer had a tunneling magnetoresistance (TMR) of 28%, an area-resistance product (RA) of $86\;k{\Omega}{\mu}m^2$, a coercivity ($H_c$) of 11 Oe, and an interlayer coupling field ($H_i$) of 20 Oe. To improve the TMR ratio and RA, a DMTJ comprising an amorphous NiFeSiB layer that could partially substitute for the CoFe free layer was investigated. This hybrid DMTJ had a TMR of 30%, an RA of $68\;k{\Omega}{\mu}m^2$, and a of 11 Oe, but an increased of 37 Oe. We confirmed by atomic force microscopy and transmission electron microscopy that increased as the thickness of NiFeSiB decreased. When the amorphous NiFeSiB layer was thick, it was effective in retarding the columnar growth which usually induces a wavy interface. However, if the NiFeSiB layer was thin, the roughness was increased and became large because of the magnetostatic $N{\acute{e}}el$ coupling.

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF

Characteristics of Gwanbuk-ri remains, Buyeo, inferred from the analysis of iron artifacts from District "Na" (부여 관북리 유적 "나" 지구 출토 제철유물의 분석을 통한 제철유적의 성격 추론)

  • Hong, Ju-Hyun;Han, Song-I;Kim, So-Jin;Han, Woo-Rim;Jo, Nam-Cheol
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.1
    • /
    • pp.4-17
    • /
    • 2017
  • In this research, the chemical composition of the iron artifacts from the late 6th-century to early 7thcentury Baekje remains in Gwanbuk-ri, Buyeo, specifically of the nine iron artifacts including slags, furnace walls and ingot iron excavated in the District "Na", were examined by observing their chemical compounds and microstructures. As a result, GB1 and GB6 were determined to be proto-reduction lumps whereas GB2, GB3, GB4 and GB5 were determined to be tempered slags, respectively. Also, he furnace wall GB7 were containing mullite and cristobalite, which are high temperature index minerals, The extrusion temperature was found out to be about $1200{\sim}1300^{\circ}C$, and it is most likely that the smelting temperature in the furnace was in that temperature range. GB8 ingot iron was determined to be a forged ironware. This ingot iron was an intermediary product for making ironware and its nonmetallic inclusions displayed similar microstructure and contents compared to the forged iron. Because of the existence of proto-reduction lumps and forged iron, the iron making facility located in District "Na" most likely had a small-scale iron making facility that handled iron bloom smelting and refining processes.

Radiosynthesis of $[^{11}C]6-OH-BTA-1$ in Different Media and Confirmation of Reaction By-products. ($[^{11}C]6-OH-BTA-1$ 조제 시 생성되는 부산물 규명과 반응용매에 따른 표지 효율 비교)

  • Lee, Hak-Jeong;Jeong, Jae-Min;Lee, Yun-Sang;Kim, Hyung-Woo;Lee, Eun-Kyoung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.241-246
    • /
    • 2007
  • Purpose: $[^{11}C]6-OH-BTA-1$ ([N-methyl-$^{11}C$]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole, 1), a -amyloid imaging agent for the diagnosis of Alzheimer's disease in PET, can be labeled with higher yield by a simple loop method. During the synthesis of $[^{11}C]1$, we found the formation of by-products in various solvents, e.g., methylethylketone (MEK), cyclohexanone (CHO), diethylketone (DEK), and dimethylformamide (DMF). Materials and Methods: In Automated radiosynthesis module, 1 mg of 4-aminophenyl-6-hydroxybenzothiazole (4) in 100 l of each solvent was reacted with $[^{11}C]methyl$ triflate in HPLC loop at room temperature (RT). The reaction mixture was separated by semi-preparative HPLC. Aliquots eluted at 14.4, 16.3 and 17.6 min were collected and analyzed by analytical HPLC and LC/MS spectrometer. Results: The labeling efficiencies of $[^{11}C]1$ were $86.0{\pm}5.5%$, $59.7{\pm}2.4%$, $29.9{\pm}1.8%$, and $7.6{\pm}0.5%$ in MEK, CHO, DEK and DMF, respectively. The LC/MS spectra of three products eluted at 14.4, 16.3 and 17.6 mins showed m/z peaks at 257.3 (M+1), 257.3 (M+1) and 271.3 (M+1), respectively, indicating their structures as 1, 2-(4'-aminophenyl)-6-methoxybenzothiazole (2) and by-product (3), respectively. Ratios of labeling efficiencies for the three products $([^{11}C]1:[^{11}C]2:[^{11}C]3)$ were $86.0{\pm}5.5%:5.0{\pm}3.4%:1.5{\pm}1.3%$ in MEK, $59.7{\pm}2.4%:4.7{\pm}3.2%:1.3{\pm}0.5%$ in CHO, $9.9{\pm}1.8%:2.0{\pm}0.7%:0.3{\pm}0.1%$ in DEK and $7.6{\pm}0.5%:0.0%:0.0%$ in DMF, respectively. Conclusion: The labeling efficiency of $[^{11}C]1$ was the highest when MEK was used as a reaction solvent. As results of mass spectrometry, 1 and 2 were conformed. 3 was presumed.

Evaluation for Applicability as the Inorganic Binder with Rapid Setting Property for Construction Material of LFS Produced from Various Manufacturing Process (다양한 철강제조공정에서 부산되는 전기로 환원슬래그의 급경성 무기결합재로의 적용성 검토)

  • Kim, Jin-Man;Choi, Sun-Mi;Kim, Ji-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.70-77
    • /
    • 2012
  • The Ladle Furnace Slag, about 20% of the electric arc furnace slag, has high content of free CaO and free MgO, which generates the expansion collapse by hydration reaction. Although many researchers have been endeavoring to recycle the EAF reducing slag in construction fields, there is not found the effective recycling method up to now. However, the LFS(Ladle Furnace Slag) contains mineral composition of the system of calcium aluminate with high-reactivity. Therefore, it is possible to developed the quick setting property and the high strength at the early age by the rapid cooling. This study aimed to check the reactive minerals and predict the reactivity with water on the LFS discharged from different steel product plants. The test results show that many types of LFS has hydration reactivity and can use in construction field as a inorganic binder with the rapid setting property.

  • PDF

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.