• 제목/요약/키워드: buying-and-selling simulation

검색결과 3건 처리시간 0.013초

기본적 분석방법을 통한 주식 투자 전략에 관한 시뮬레이션 연구 (A Simulation Study of the Investment Strategy in Stocks on Fundamental Analysis)

  • 구승환;장성용
    • 경영과학
    • /
    • 제29권2호
    • /
    • pp.53-64
    • /
    • 2012
  • This paper is about the investment strategy in stocks on Fundamental analysis. Financial data of stocks from January 2. 2001 through October 30. 2009 were utilized in order to suggest the investment strategies. Fundamental analysis was used in stocks-related strategy. The portfolios are composed of 3 criteria such as the buying criteria score, exchange cycle and selling conditions. The buying criteria score is determined assigned to each stock index according to the satisfaction condition of 15 parameters selected considering the grue's criteria. The stock buying alternatives has two options with buying stocks over 13 points and over 14 points of buying criteria score. The seven exchange cycles and three selling methods are considered. So total number of portfolios is 42($2{\times}7{\times}3=42$). The simulation has been executed about each 42 portfolios and we figured out with the simulation result that 83.33% of 35 portfolios are more profitable than average stock market profit(203.43%). The outcome of this research is summarized in two parts. First, it's the exchange strategy of portfolio. The result shows that value-oriented investment (long-term investment) strategy yields much higher than short-term investment strategies of stocks. Second, it's about the exchange cycle forming the portfolios. The result shows that the rate of return for the portfolio is the best when exchange cycle is 18 months.

인공신경망을 이용한 한국 종합주가지수의 방향성 예측 (Predicting Korea Composite Stock Price Index Movement Using Artificial Neural Network)

  • 박종엽;한인구
    • 지능정보연구
    • /
    • 제1권2호
    • /
    • pp.103-121
    • /
    • 1995
  • This study proposes a artificial neural network method to predict the time to buy and sell the stocks listed on the Korea Composite Stock Price Index(KOSPI). Four types (NN1, NN2, NN3, NN4) of independent networks were developed to predict KOSPIs up/down direction after four weeks. These networks have a difference only in the length of learning period. NN5 - arithmetic average of four networks outputs - shows an higher accuracy than other network types and Multiple Linear Regression (MLR), and buying and selling simulation using systems outputs produces higher reture than buy-and-hold strategy.

  • PDF

주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구 (Data Mining Tool for Stock Investors' Decision Support)

  • 김성동
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.472-482
    • /
    • 2012
  • 주식시장에는 많은 투자자들이 참여하고 있으며 점점 더 많은 사람이 주식투자에 관심을 가지고 있다. 주식시장에서 위험을 회피하고 수익을 얻기 위해서는 다양한 정보를 바탕으로 정확한 의사결정을 해야한다. 즉 수익을 얻을 수 있는 종목 선택, 적절한 매수-매도 가격의 결정, 그리고 적절한 보유기간 등을 결정해야 한다. 본 논문에서는 개인 주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구를 제안한다. 즉, 개인 투자자가 직접 기계학습 방법을 적용하여 주가예측 모델을 생성할 수 있게 하고, 적절한 매수-매도 가격과 보유기간 등을 결정하는 것을 도와주는 도구를 제안한다. 제안하는 도구는 과거 데이터를 이용하여 투자자 자신의 성향에 맞는 투자에서의 의사결정을 할 수 있도록 지원하는 도구로서 주가데이터 관리, 기계학습 적용을 통한 주가예측 모델 생성, 투자 시뮬레이션 등의 기능을 제공한다. 사용자는 스스로 주가에 영향을 미칠 수 있다고 판단하는 기술적 지표를 선정하고 이를 이용하여 주가예측 모델을 만들고 테스트 할 수 있으며, 적절한 예측모델을 적용하여 시뮬레이션을 수행해 봄으로써 실제로 어느 정도 수익을 얻을 수 있는지 평가하고 적절한 매매 정책을 수립할 수 있다. 제안하는 도구를 이용하여 주식 투자자는 기존의 감정적 판단에 의한 투자가 아닌 객관적 데이터에 의해 검증을 거친 주가예측 모델과 매매정책에 따라 주식투자를 할 수 있어 이전 보다 나은 수익을 기대할 수 있다.