• Title/Summary/Keyword: bus

Search Result 3,847, Processing Time 0.03 seconds

Prostate cancer in workers exposed to night-shift work: two cases recognized by the Korean Epidemiologic Investigation Evaluation Committee

  • Sungkyun Park;Seongwon Ma;Hoekyeong Seo;Sang Gil Lee;Jihye Lee;Shinhee Ye
    • Annals of Occupational and Environmental Medicine
    • /
    • v.35
    • /
    • pp.52.1-52.13
    • /
    • 2023
  • Background: In 2019, the International Agency for Research on Cancer re-evaluated the carcinogenicity of night-shift work and reported that there is limited evidence that night-shift work is carcinogenic for the development of prostate cancer. Therefore, in 2020 and 2021, the Korean Epidemiologic Investigation Evaluation Committee concluded that 2 cases of prostate cancer were occupational diseases related to the night-shift work. Here, we report the 2 cases of prostate cancer in night-shift workers which were first concluded as occupational diseases by the Korean Epidemiologic Investigation Evaluation Committee. Case presentation: Patient A: A 61-year-old man worked as a city bus driver for approximately 17 years, from 2002 to 2019, and was exposed to night-shift work during this period. In March 2017, the patient was diagnosed with high-grade prostate cancer through core-needle biopsy after experiencing stinging pain lasting for 2 months. Patient B: A 56-year-old man worked as an electrician and an automated equipment operator in a cement manufacturing plant for 35 years from 1976 to 2013 and was exposed to night-shift work during this period. In 2013, the patient was diagnosed with high-grade prostate cancer through core needle biopsy at a university hospital because of dysuria that lasted for 6 months. Conclusions: The 2 workers were diagnosed with high-grade prostate cancer after working night shifts for 17 and 35 years respectively. Additionally, previous studies have reported that high-grade prostate cancer has a stronger relationship with night-shift work than low or medium-grade prostate cancer. Therefore, the Korean Epidemiologic Investigation Evaluation Committee concluded that night-shift work in these 2 patients contributed to the development of their prostate cancer.

A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method (온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

Research on Actual Vehicle Application of Composite Regenerative DPF for Reducing Exhaust Gases of Light-duty Diesel Engines (소형디젤기관의 배출가스 저감을 위한 복합재생방식 DPF의 실차적용 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.68-74
    • /
    • 2024
  • As awareness of environmental pollution problems increases worldwide, interest in air pollutants is increasing. In particular, NOx and PM, which are major pollutants in diesel vehicles, are contributing significantly to emissions. As a result, its importance is increasing. In this study, based on research results applied to large diesel vehicles, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation is solved by applying a complex regeneration DPF that is not affected by temperature conditions to small diesel vehicles. The feasibility of application to small diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the engine test, the power reduction rate and fuel consumption rate before and after device installation under full load conditions were 2.9% decrease and 3.5% increase, respectively, satisfying the standard for a 5% reduction, and as a result of the regeneration equilibrium temperature (BPT) test, the regeneration temperature was 310℃. appeared at the level. The reduction efficiency test results for the actual vehicle durability test equipment showed 97.3% PM, 51.0% CO, and 31.1% HC, while the city commuter vehicle had PM 97.5%, CO 61.7%, HC 40.0%, and the school bus vehicle had PM 96.8%, CO 44.4%, HC 34.3%, and low-speed logistics vehicles showed a reduction efficiency of 98.2% for PM, 36.0% for CO, and 45.7% for HC. Based on the results of this study, in the future, it is necessary to secure DPF technology suitable for all vehicle types through actual vehicle application research on temperature condition-insensitive composite regenerative DPF for medium-sized vehicles.

Lessons and Countermeasures Learned from Both Domestic and Foreign CubeSat Missions (국내외 큐브위성 운용 사례로 살펴본 교훈과 대책 )

  • In-Hoi Koo;Myung-Kyu Lee;Seul-Hyun Park
    • Journal of Space Technology and Applications
    • /
    • v.3 no.4
    • /
    • pp.355-372
    • /
    • 2023
  • As the need for low-cost, high-efficiency cubesats develops in the new space age, commercial paradigms are shifting in the private sector. This paper examines the challenges of launching and operating both domestic and foreign cubesats, and proposes practical solutions to ensure the robustness and reliability of the satellites from a practical perspective. In particular, the paper deals with checkpoints that are easy to miss, focusing on key events that can occur from the satellite deployment process through normal mode to mission mode in the operation scenario. Although the contents presented in this paper may not be technically applicable to all cubesat systems due to the different nature of each satellite bus system, they will be of some help during satellite assembly, integration and testing.

Effect of Functionalized BR Content on the Wear Particulate Matters and Physical Properties in TBR Tire Tread Compounds

  • Junhwan Jeong;Sanghoon Song;Jin Uk Ha;Daedong Park;Jaeyun Kim;Yeongmin Jung;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.64-72
    • /
    • 2024
  • As air pollution continues to increase owing to increasing traffic centered in urban areas, the tire industry is researching methods to reduce particulate matter. In this study, functionalized lithium butadiene rubber (F-LiBR) was applied to a natural rubber (NR)/butadiene rubber (BR) blend compound often used in truck bus radial (TBR) tire treads. The effect of the functional group that can react with carbon black (CB) in BR was investigated in terms of the dispersion of CB and the compound performance, including the generation of particulate matter. Compounds that were substituted with F-LiBR exhibited enhanced interaction with CB, resulting in excellent filler dispersion. Although F-LiBR exhibited lower crosslinking density and inferior abrasion resistance due to its high vinyl content, the compound with 30 phr of F-LiBR was advantageous in terms of its rolling resistance due to the excellent filler dispersion, which was also effective in reducing the amount of generated particulate matter (up to 56% reduction for PM2.5, and 67% reduction for PM10). The results confirmed the benefits of the introduction of functional groups into TBR tire tread compounds, which can aid in improving the fuel efficiency and reducing particulate matter generation.

Redundancy Management Method on Compact Flight Control Computer for AAV (AAV용 소형비행제어컴퓨터의 다중화 관리 방안)

  • Young Seo Lee;Ji Yong Kim;Duk Gon Kim;Gyong Hoon Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.459-465
    • /
    • 2024
  • The flight control computer applied to manned/unmanned aircraft is one of the key components directly connected to the control of the aircraft, and is generally designed with a redundant architecture so that essential functions for flight can be maintained even if a failure occurs in a single channel. The operational flight program loaded on these redundant flight control computers should be designed considering a time synchronization between channels, input data selection methods from redundant sensors, and fault detection/isolation methods for channels. In this paper, we propose a redundancy management method applied to triplex compact flight control computers for advanced air vehicle. The proposed redundancy management method includes a synchronization algorithm between triplex channels, an input data voting method from sensors, a bus control right selection method for control command output, and a fault detection/isolation method for channels.

A Methodology of Multimodal Public Transportation Network Building and Path Searching Using Transportation Card Data (교통카드 기반자료를 활용한 복합대중교통망 구축 및 경로탐색 방안 연구)

  • Cheon, Seung-Hoon;Shin, Seong-Il;Lee, Young-Ihn;Lee, Chang-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.233-243
    • /
    • 2008
  • Recognition for the importance and roles of public transportation is increasing because of traffic problems in many cities. In spite of this paradigm change, previous researches related with public transportation trip assignment have limits in some aspects. Especially, in case of multimodal public transportation networks, many characters should be considered such as transfers. operational time schedules, waiting time and travel cost. After metropolitan integrated transfer discount system was carried out, transfer trips are increasing among traffic modes and this takes the variation of users' route choices. Moreover, the advent of high-technology public transportation card called smart card, public transportation users' travel information can be recorded automatically and this gives many researchers new analytical methodology for multimodal public transportation networks. In this paper, it is suggested that the methodology for establishment of brand new multimodal public transportation networks based on computer programming methods using transportation card data. First, we propose the building method of integrated transportation networks based on bus and urban railroad stations in order to make full use of travel information from transportation card data. Second, it is offered how to connect the broken transfer links by computer-based programming techniques. This is very helpful to solve the transfer problems that existing transportation networks have. Lastly, we give the methodology for users' paths finding and network establishment among multi-modes in multimodal public transportation networks. By using proposed methodology in this research, it becomes easy to build multimodal public transportation networks with existing bus and urban railroad station coordinates. Also, without extra works including transfer links connection, it is possible to make large-scaled multimodal public transportation networks. In the end, this study can contribute to solve users' paths finding problem among multi-modes which is regarded as an unsolved issue in existing transportation networks.

The Impact of Organizational Internal IT Capability on Agility and Performance: The Moderating Effect of Managerial IT Capability and Top Management Championship (기업 내적 IT 자원이 기업 민첩성과 성과에 미치는 영향: 관리적 IT 능력과 경영진 존재의 조절효과)

  • Kim, Geuna;Kim, Sanghyun
    • Information Systems Review
    • /
    • v.15 no.3
    • /
    • pp.39-69
    • /
    • 2013
  • Business value of information technology has been the biggest interest of all such as practitioners and scholars for decades. Information technology is considered as the driving force or success factor of firm agility. The general assumption is that organizations making considerable efforts in IT investment are more agile than the organizations that are not. However, IT that should help the strategies of the firm that can hinder business or impede agility of the firm occasionally. In other words, it is still unknown if IT helps the agility of the firm or bothers it. Therefore, we note that contrary aspects of IT such as promotion and hindrance of firm agility have been observed frequently and theorize the relationships between them. In other words, we propose a rationale that firms should need to develop superior firm-wide IT capability to manage IT resources successfully in order to realize agility. Thus, this paper theorizes two IT capabilities, including technical IT capability and managerial IT capability as key factors impacting firm agility and firm performance. Further, we operationalize firm agility into two sub-types, including operational adjustment agility and market capitalizing agility. The data from 171 firms was analyzed using PLS approach. The results showed that technical IT capability has positive impact on firm agility and managerial IT capability had positive moderating effects between technical IT capability and firm agility. In addition, it was identified that top management championship positively moderates between agility and firm performance. Finally, it was indicated that firm agility was a very important causal variable of firm performance. Our study provides more exquisite and practical empirical evidences in the relationship between IT capability and firm agility by proposing applicable solution although IT has some contradicting effects on firm agility. Our findings suggest many useful implications to agility related researches in relatively primitive stage and working level officers in organizations.

  • PDF

Construction and Tests of the Vacuum Pumping System for KSTAR Current Feeder System (KSTAR 전류전송계통 진공배기계 구축 및 시운전)

  • Woo, I.S.;Song, N.H.;Lee, Y.J.;Kwag, S.W.;Bang, E.N.;Lee, K.S.;Kim, J.S.;Jang, Y.B.;Park, H.T.;Hong, Jae-Sik;Park, Y.M.;Kim, Y.S.;Choi, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.483-488
    • /
    • 2007
  • Current feeder system (CFS) for Korea superconducting tokamak advanced research(KSTAR) project plays a role to interconnect magnet power supply (MPS) and superconducting (SC) magnets through the normal bus-bar at the room temperature(300 K) environment and the SC bus-line at the low temperature (4.5 K) environment. It is divided by two systems, i.e., toroidal field system which operates at 35 kA DC currents and poloidal field system wherein 20$\sim$26 kA pulsed currents are applied during 350 s transient time. Aside from the vacuum system of main cryostat, an independent vacuum system was constructed for the CFS in which a roughing system is consisted by a rotary and a mechanical booster pump and a high vacuum system is developed by four cryo-pumps with one dry pump as a backing pump. A self interlock and its control system, and a supervisory interlock and its control system are also established for the operational reliability as well. The entire CFS was completely tested including the reliability of local/supervisory control/interlock, helium gas leakage, vacuum pressure, and so on.

Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus (CNG 버스용 NGOC의 CH4 저감 성능 향상을 위한 연구)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.708-715
    • /
    • 2017
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicles and vessels has been increasing gradually. The objective of this study is to investigate the improvement of $CH_4$ reduction ability of natural gas oxidation catalyst (NGOC), which reduces toxic gases emitted from CNG buses. Thirteen NGOCs were prepared, and the conversion performance of noxious gases according to the type of supports, the loading amount of noble metal, and surfactant and aging were determined. Support Zeolite supported on No. 3 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(46TiO_2+23Al_2O_3+23Zeolite)$ is an anionic alkali metal/earth metal component that improved the oxidation reactivity between CO and NO and noble metal dispersion, and thus enhanced the $CH_4$ reduction ability. As the loading amount of Pd, a noble metal with a high selectivity to $CH_4$, was increased, the number of reaction sites was increased and the ability to reduce $CH_4$ was improved. No. 11 $NGOC(1Pt-1Pd-3MgO-3CeO_2/(Z20+Al80)$(pH=8.5), to which nitrate surfactant had been added, exhibited well dispersed catalyst particles with no agglomeration and improved the $CH_4$ reduction ability by 5-15%. The $NGOC(2Pt-2Pd-3Cr-3MgO/90Al_2O_3)$(48h aging), which was mildly thermal aged for 48h, increased the $CH_4$ reduction ability to about 10% or less as compared with No. 12 NGOC(Fresh).