• Title/Summary/Keyword: bursting potential

Search Result 12, Processing Time 0.017 seconds

A Study on the Properties of Jumchi Hanji for Application as Shroud Materials (수의용 소재로 활용을 위한 줌치한지의 물성에 관한 연구)

  • Jeon, Yang Bae;Kim, Ki Hoon;Lim, Hyun A
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.397-403
    • /
    • 2014
  • In this study, various types of Jumchi Hanji were made to develop shroud materials as a new use for Hanji. The properties of Hanji (basis weight, thickness, apparent density, bulk, tensile strength, wet tensile strength, elongation ratio, tear strength, bursting strength, and folding endurance) are measured. In all cases, Jumchi Hanji had a higher thickness, lower apparent density and higher bulk than Hanji because pores in the intervals of mulberry fiber are composed of bulk. So, it is considered to carry a value as a textile material. As for the results of the strength analysis of Jumchi Hanji, Jumchi technique enhances 25% of elongation ratio, which is regarded the most important role in textiles and 35% of bulk. Moreover, it was shown that it enhanced overall strength. In conclusion, it implies the possibility of applying it as a shroud material. Jumchi Hanji is thought to have enough potential to be developed as a material to carry the characteristics of Hanji in the textile market.

Properties of Hanji with natural pigment dyeing for use as a fashion material (천연 황색안료 염색한지의 패션소재 적용 가능성 평가에 관한 연구)

  • Kim, Kihoon;Lim, Hyuna
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.2
    • /
    • pp.339-345
    • /
    • 2014
  • This study analyzes and compares Hanji made with loess to Hanji made with kaolin, two yellow-based inorganic pigments, in terms of its physical properties, optical properties, and color fastness to light with the aim of using it as a fashion material. Hanji made by adding inorganic pigments showed an approximately 20% retention ratio on average. This figure was similar to those of loess and kaolin. Physical properties were analyzed, with the following results. A higher amount of additives lowered the apparent density and increased thickness and bulk. In general, inorganic pigment-added Hanji had lower tensile strength, bursting strength, and folding endurance compared to non-additive Hanji. The analysis of optical properties showed a lower brightness index for Hanji made with inorganic pigments compared to non-additive Hanji. When comparing the two inorganic pigments, the brightness of Hanji made with kaolin was higher. Regarding color fastness to light, loess showed level 4 and kaolin showed level 5 when 25% inorganic pigments on pulp were added to Hanji. Thus, Hanji made by adding inorganic pigments during the manufacturing process may perform well as materials for fashion because the additives enhanced both the color fastness to light and the bulk while maintaining the strength. In addition, Hanji dyed with inorganic pigments may have the potential to serve as materials for the fashion industry while still retaining the characteristics of Hanji.