• Title/Summary/Keyword: burst size

Search Result 155, Processing Time 0.02 seconds

Classification and Characterization of Bacteriophages of Lectobacillus casei (Lactobacillus casei Bacperiophage의 분류 및 특성에 관한 연구)

  • 김영창;박민철;강국희;윤영호;이광웅
    • Korean Journal of Microbiology
    • /
    • v.17 no.4
    • /
    • pp.165-178
    • /
    • 1979
  • Phages of Lactobaciilus casei (PLC) isolated from plant drainage were classified and characterized. The results are as follows : 1. On the basis of host range pattern, phages could be divided into 2 groups (PLC-B and PLC-C). PLC-B group phages could be further divided into 5 sub-groups $(B_1, \;B_2, \;B_3, \;B_4, \;and\;B_5)$. Although PLC-C group phages had the same host range, they could be also divided into 2 sub-groups $(C_1\;and\;C_2)$ by morphlogical type. 2. It was $B_3$ group phages that represented a major proportion (44.4%) of phages tested. However, $B_1$ group phages were shown to have the widest host range. 3. Electron micrographs revealed that the phages fell into three different morphological types. $(B_1, \;B_2, \;and\;B_3)$ group phages hd a hexagonal head (52nm in diameter) and a sheathless noncontractile (245 nm in length). $B_4\;and\;C_2$ group phages had a hexagonal head (56 nm) and a short flexible tail (169nm) having no sheath. $B_5\;and\;C_1$ group phages were shown to have a hexagonal head (81 nm) and a contractile tail (140 nm) having a sheath, a base plate and tail fibers. 4. The inactivation of the phages by antisera indicated that serological relationships correlated completely with morphological types. 5. $B_1, \;C_1\;and\;C_2$ group phages produced a large (1, 2 mm in diameter) plaque with a clear ring. The morphology of plaques of $B_3\;and\;B_5$ group phages was the same as those produced by the above, but the average plaque sizes for $B_3\;and\;B_5$ were 0.8 mm abd 0.5 mm, respectively. $B_2\;and\;B_4$ group phages produced a small (0.5 mm) turbid plaque with an irregular edge. 6. The latent period and the average burst size of $B_1\;and\;B_3$ group phages were 90 min and 100, respectively. These phages reuqired calcium ions for their miltiplication. 7. $B_3$ group phages could not be absrobed to R-variant $KC_1$. 8. The order of resistance of phages to heat was $B_2\;>\;B_1, B_4\;and\;B_5\;>\;B_3\;and\;C_2, \;B_5$ group phages were more stable than $B_3$ in various pH values. $C_2$ group phages were more sensitive to UV irradiation than $B_1\;and\;B_3$ group phages. 9. Strains YIT9018 and IAM 1043 were induced by mitomycin C treatment. Phage particles detected in the lysates had a hexagonal head (38 and 49 nm, respectively), but no tail. Any sensitive indicator strain could not be isolated in spite of repaeated trials.

  • PDF

A Study on the Probability of BLEVE of Above-ground LP Gas Storage Tanks Exposed to External Fire (지상식 LPG 저장탱크의 외부화재에 의한 BLEVE 가능성 해석)

  • Lee Seung-Lim;Lee Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.1 s.18
    • /
    • pp.19-23
    • /
    • 2003
  • The purpose of this thesis is to investigate the BLEVE probability of LP gas storage tanks which are relatively more dangerous, by the deductive calculating method using the results of Birk's pilot tank test and the required heat capacity of BLEVE. The result that BLEVEs can occur in only above 43.68 percent of liquid filling level under $600^{\circ}C$ of tank pate temperature and $53^{\circ}C$ of inner liquid temperature, was obtained and will be useful for preventing the BLEVE of LP gas storage tanks in fire sites. In addition, this research showed conditions of external leak and fire causing BLEVE, based on 15ton capacity of LP gas tank which has the same specifications as those in Puchon LP gas filling station accident. The result of the calculation is that the minimum pool fire conditions of BLEVE are above 7.2mm equivalent diameter under a liquid release condition and above 17.6mm equivalent diameter under a two-phase release condition. In the end, the result of calculating the pool size corresponding the above conditions using EFFECTS version 2.1, concludes that a minimum of 3.3 meters of diameter and 10.4 meters of height should be needed for BLEVE outbreak.

  • PDF

The Development of 63nm Diode Laser System for Photodynamic Therapy of Cancer (광역학적 암치료를 위한 635nm 다이오드 레이저 시스템 개발)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.319-328
    • /
    • 2003
  • The purpose of this paper is to develop a medical laser system using the semiconductor diode laser in order to photodynamic cancel therapy as a light source. The ideal light source for photodynamic therapy would be a homogeneous nondiverging light with variable spot size and specific wavelength with stability. After due consideration in this point, in this paper, we used a diode laser resonator of 635nm wavelength. The development laser system have a statistical laser out beam with accuracy control using the constant current control of method and clinic-friendly with compact. In order to protect the diode resonator from the over-current, the rush-current and electrical fault, we specially designed. The most importance therapeutic factor are the radiation mode for cancer therapy. So we developed the radiation mode of CW(Continuous Wave), long pulse, short pulse, and burst pulse and can adjust the exposure time from several milli-second to several minute. The experimental result shows that laser beam power was increased linear from 10mW to 300mW according to the increasing input current and the increasing exposure time. The developed new compact diode laser system have a stability of output power and specific wavelength with easy control and transportable for many applications of PDT.

A Study on the Improvement of Welding Method for Ice Evaporator (얼음증발기 용접방법 개선에 관한 연구)

  • Lee, Jeong-Youn;Yoo, Heung-Ryol;Son, Yung-Deug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.558-564
    • /
    • 2021
  • The water purifier market has increased rapidly in recent years. The welding technology of the evaporator is a key component that determines the level of ice production and the cold water performance of an ice purifier. The finger type evaporator of an ice purifier can remove ice and is divided largely into an instant heat method and a hot gas method. In the hot gas type evaporator, particularly during the production process, the pinhole phenomenon inside the copper pipe and clogging problems occur intermittently when welding high-pressure pipes due to the high-temperature oxygen welding. Its use in a water purifier can cause a problem in that ice and cold water do not form, and repairs cannot be made on site. To solve this problem, in this study, a cap jig was applied to improve the welding defect of the hot gas evaporator. In addition, the oxygen welding flame size was adjusted so that the heat source could be well supplied to the cap jig, and the effectiveness was confirmed through a wave pressure test, a test, and a thermal shock test.

Development of High Intensity Focused Ultrasound (HIFU) Mediated AuNP-liposomal Nanomedicine and Evaluation with PET Imaging

  • Ji Yoon Kim;Un Chul Shin;Ji Yong Park;Ran Ji Yoo;Soeku Bae;Tae Hyeon Choi;Kyuwan Kim;Young Chan Ann;Jin Sil Kim;Yu Jin Shin;Hokyu Lee;Yong Jin Lee;Kyo Chul Lee;Suhng Wook Kim;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • Liposomes as drug delivery system have proved useful carrier for various disease, including cancer. In addition, perfluorocarbon cored microbubbles are utilized in conjunction with high-intensity focused-ultrasound (HIFU) to enable simultaneous diagnosis and treatment. However, microbubbles generally exhibit lower drug loading efficiency, so the need for the development of a novel liposome-based drug delivery material that can efficiently load and deliver drugs to targeted areas via HIFU. This study aims to develop a liposome-based drug delivery material by introducing a substance that can burst liposomes using ultrasound energy and confirm the ability to target tumors using PET imaging. Liposomes (Lipo-DOX, Lipo-DOX-Au, Lipo-DOX-Au-RGD) were synthesized with gold nanoparticles using an avidin-biotin bond, and doxorubicin was mounted inside by pH gradient method. The size distribution was measured by DLS, and encapsulation efficiency of doxorubicin was analyzed by UV-vis spectrometer. The target specificity and cytotoxicity of liposomes were assessed in vitro by glioblastoma U87mg cells to HIFU treatment and analyzed using CCK-8 assay, and fluorescence microscopy at 6-hour intervals for up to 24 hours. For the in vivo study, U87mg model mouse were injected intravenously with 1.48 MBq of 64Cu-labeled Lipo-DOX-Au and Lipo-DOX-Au-RGD, and PET images were taken at 0, 2, 4, 8, and 24 hours. As a result, the size of liposomes was 108.3 ± 5.0 nm at Lipo-DOX-Au and 94.1 ± 12.2 nm at Lipo-DOX-Au-RGD, and it was observed that doxorubicin was mounted inside the liposome up to 52%. After 6 hours of HIFU treatment, the viability of U87mg cells treated with Lipo-DOX-Au decreased by around 20% compared to Lipo-DOX, and Lipo-DOX-Au-RGD had a higher uptake rate than Lipo-DOX. In vivo study using PET images, it was confirmed that 64Cu-Lipo-DOX-Au-RGD was taken up into the tumor immediately after injection and maintained for up to 4 hours. In this study, drugs released from liposomes-gold nanoparticles via ultrasound and RGD targeting were confirmed by non-invasive imaging. In cell-level experiments, HIFU treatment of gold nanoparticle-coupled liposomes significantly decreased tumor survival, while RGD-liposomes exhibited high tumor targeting and rapid release in vivo imaging. It is expected that the combination of these models with ultrasound is served as an effective drug delivery material with therapeutic outcomes.