• 제목/요약/키워드: burning velocity

검색결과 204건 처리시간 0.023초

영역조건평균에 기초한 난류연소속도의 직접수치해법검증 (Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database)

  • 김수엽;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.62-69
    • /
    • 2004
  • Zone conditional formulations for the Reynolds average reaction progress variable are used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

영역조건평균에 기초한 난류연소속도의 직접수치해법검증 (Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database)

  • 김수엽;허강열
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.1-8
    • /
    • 2004
  • Zone conditional formulation for the Reynolds average reaction progress variable is used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

가솔린.메탄의 연소특성 비교 (Comparison of the Combustion Characteristics of Methane-Air and Gasoline-Air Mixtures)

  • 박명호
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.7-11
    • /
    • 2002
  • Comparison of the combustion characteristics of methane-air and gasoline-air mixtures has been conducted experimentally by a spherical bomb technique. The results indicate 1) the burning velocity of gasoline is slightly higher than that of methane, but their basic behavior of combustion characteristics, positive dependence on temperature and negative one on pressure, are the same, and 2) 20 vol.% addition of hydrogen to methane enhances the burning velocity by about 30%, but does not come to reverse the tendency of pressure dependence to that of pure hydrogen.

  • PDF

합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part I: 연소특성 (A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part I: Characteristics of Combustion)

  • 정병규;이용호;이기만
    • 한국수소및신에너지학회논문집
    • /
    • 제25권1호
    • /
    • pp.47-58
    • /
    • 2014
  • The characteristics of flame shape, laminar burning velocity, emissions and heat flux of stagnation point in premixed impinging jet flame of syngas fuel with 10% hydrogen content were experimentally investigated. Also, the adiabatic temperature and burning velocity are calculated by Chemkin package with USC-II mechanism. The equivalence ratios(0.8~5.0) and dimensionless separation distance(2.0~5.0) with fixed Reynolds number(1800) are main parameters in this work. Different flame shapes and colors were observed for different impingement conditions. The experimental results of burning velocity by flame surface area have a consistent with previous works and numerical simulation of this work. The inner flame length could be predicted with the ratio of mixture velocity and burning velocity from a simple formulation by the laminar burning velocity definition. It has been observed that the heat fluxes at stagnation point are directly affected by the flame shape including the separation distance. The emission results in impinging flame of syngas fuel show that the characteristics of $NO_x$ emission traced well with adiabatic temperature trend and CO emission due to fuel rich condition increased continuously with respect to the equivalence ratio.

물 혼합에 의한 메탄-공기 예혼합기의 연소(1) - 화염전파과정 (Combustion in Methane-Air Pre-Mixture with Water Vapor(1) - Progress of Flame Propagation)

  • 권순익
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.5-10
    • /
    • 2008
  • A flame speed of methane mixture of water vapor and air have been measured to study the process of flame propagation using schlieren photographs. The quantity of water vapor contained were changed 5% and 10% of total mixture, and equivalence ratio of mixture between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed that the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the reduction rate of burning velocity was smaller by increasing the water contents under the same ambient temperature. The effects of ambient temperature on burning velocity was decreased by increasing the water vapor contents.

  • PDF

부족성분 확산계수의 영향을 고려한 난류연소속도의 스펙트럼 모델 (Spectral Model of Turbulent Burning Velocity Taking Account of the Diffusivity of Deficient Reactant)

  • 김준효
    • 수산해양기술연구
    • /
    • 제33권3호
    • /
    • pp.218-225
    • /
    • 1997
  • The formerly proposed spectral model of turbulent burning velocity is refined for nonstoichiometric hydrocarbon mixtures. Refinements are made in regard to the following two points : (1) an effect of the diffusivity of deficient reactant on the turbulent burning velocity and (2) consideration of increasing laminar name thickness with a decrease in the laminar burning velocity A comparison between the predicted turbulent velocities and the measured ones is made. The predictions by the refined spectral model agree quantatively well with the experimental results in the regime of practical equivalence ratio, but not in the high and low equivalence ratio regime.

  • PDF

고온 동축류에서 층류 화염의 부상특성 (Characteristics of Laminar Lifted Flame in High Temperature Coflow)

  • 김길남;원상희;차민석;정석호
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.1-6
    • /
    • 2002
  • Characteristics of laminar lifted flames of propane highly-diluted with nitrogen have been investigated at various temperatures of coflow air. At various fuel mole fractions, the base of laminar lifted flames has the structure of tribrachial (or triple) flame. The liftoff heights are correlated well with the stoichiometric laminar burning velocity considering initial temperature at a given coflow velocity. It shows that lifted flames are stabilized on the basis of the balance mechanism between local flow velocity and the propagation speed of tribrachial flame, regardless of the temperature of coflow and fuel mole fraction. Lifted flames exist for a jet velocity even smaller than the stoichiometric laminar burning velocity, and liftoff velocity increases more rapidly than stoichiometric laminar burning velocity as coflow temperature increases. These can be attributed to the buoyancy effect due to the density difference.

  • PDF

터널 화재시 배연속도가 연소율변화에 미치는 실험적 연구 - Heptane 풀화재 경우 (An Experimental Study on the Ventilation velocity of the Variation of Burning rate in Tunnel Fires - Heptane pool fire case)

  • 유홍선;양승신
    • 한국터널지하공간학회 논문집
    • /
    • 제7권2호
    • /
    • pp.109-117
    • /
    • 2005
  • 본 연구는 터널내 화재시 배연속도가 연소율 변화에 미치는 영향을 파악하기 위하여 Froude scaling에 의해 1/20 크기로 축소한 모형화재 실험을 수행하였다. 화원으로는 4.5cm~8.5cm의 헵탄을 사용하였으며 발열량은 3.71~15.6 kW이다. 연소율은 로드셀을 이용하여 산출하였고, 연기거동을 파악하기 위하여 K형 열전대를 이용하여 온도분포를 측정하였다. 풍동은 터널 상류 한쪽부분과 연결하였고, 터널 공간의 배연속도를 제어하기 위하여 풍동의 인버터를 조정하였다. 헵탄 풀화재인 경우 배연속도가 증가할수록 충분한 산소의 공급으로 연소율은 증가하였으며, 같은 무차원 속도($\bar{V}$) 일때 화원 크기가 작아짐에 따라 연소율은 증가하였다.

  • PDF

초소형 연소기에서 연소성능과 연소속도에 대한 연구 (Study on Combustion Performance and Burning Velocity in a Micro Combustor)

  • 나한비;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.662-670
    • /
    • 2005
  • The effect of heat loss on combustion performance and burning velocity of micro combustors in various conditions were exploited experimentally. Three different gases were used, and various geometric matrixes were considered to figure out the phenomena of combustion in a micro combustor. The micro combustors used in this study were constant volume combustors and had cylindrical shape. Geometric parameter of combustor was defined as combustor height and diameter. The effect of height was exploited parametrically as 1mm, 2mm and 3 mm and the effect of diameter was parameterized to be 7.5 mm and 15 mm. Three different combustibles which were Stoichiometric mixtures of methane and air, hydrogen and air, and mixture of hydrogen and air with fuel stoichiometry of two were used. By pressure measurement and visualization of flame propagation, characteristic of flame propagation was obtained. Flame propagations which were synchronized with pressure change within combustor were analyzed. From the analysis of images obtained during the flame propagations, burning velocity at each location of flame was obtained. About $7\%$ decrease in burning velocity of $CH_4/Air$ stoichiometric mixture compared with previous a empirical result was observed, and we can conclude that it is acceptable to use empirical equations for laminar premixed flame burning velocity to micro combustions. Results presented in this paper will give fine tool for analysis and prediction of combustion process within micro combustors.

천연가스의 연소속도 측정에 관한 실험적 연구 (An experimental study on the burning velocity measurement of natural gas)

  • 유현석;한정옥;방효선
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.195-201
    • /
    • 1997
  • Static and non-static flame methods were used to measure the laminar burning velocity of methane, ethane and natural gas. The flame slot angle and velocity of unburned gas mixture were determined by Schlieren method and LDV, respectively, for static flame. The diameter of nozzle was selected as 11 mm. The experimental results containing the stretch effect showed that the maximum burning velocities were 41.5 for natural gas, 40.8 for methane and 43.4 cm/sec for ethane on equivalence ratio of 1.1. Constant volume combustion chamber was also used for non-static flame. The propagation process of flame front was visualized by high speed camera during constant pressure. The maximum burning velocity of natural gas was determined as 42.1 cm/sec on equivalence ratio of 1.15.