• Title/Summary/Keyword: burning temperature

Search Result 421, Processing Time 0.032 seconds

Development of Combustion System for Solid Oxide Fuel Cell System (고체산화물 연료전지용 예혼합 연소시스템 개발)

  • Jo, Soonhye;Lee, Pilhyong;Cha, Chunloon;Hong, Seongweon;Hwang, Sangsoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling (성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도)

  • Pae, Sang-Soo;Kim, Yong-Tae;Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

Synthesis of Poly(glycidyl azide-co-glycidyl ferrocenyl ether) (Poly(glycidyl azide-co-glycidyl ferrocenyl ether)의 합성)

  • Jung, Haeji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2019
  • Ferrocene and ferrocene derivatives have been widely used as a burning rate catalyst for composite solid propellants. However, its tendency to migrate through the propellant grain and to crystallize at the surface changes the composition of propellant which results in unpredictable burning rate. To overcome the weakness of ferrocene catalyst, we designed a polymer containing ferrocene, poly(glycidyl azide-co-glycidyl ferrocenyl ether) (GAFP). GAFPs were synthesized from poly(epichlorohydrin-co-glycidyl ferrocenyl ether) (PEGF) which has ferrocenyl ethers in its pendant groups. The structures of GAFPs were confirmed by FT-IR, $^1H$ and $^{13}C$ NMR spectral analyses. Thermal properties of the GAFPs were evaluated using differential scanning calorimeter (DSC). As the contents of ferrocene increased, the glass transition temperature ($T_g$) of the GAFPs shifted to a higher temperature, and the decomposition temperature ($T_d$) decreased because the ferrocene worked as a burning rate catalyst.

Combustion Properties of PCP/Nitramine/AP Propellants (PCP/Nitramine/AP 기반 추진제의 연소 특성 연구)

  • Kim, Sung June
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.12-18
    • /
    • 2021
  • This study aimed at preparing the solid propellants featuring high pressure exponent available for throttleable rocket system development. The combustion properties of solid propellant based on PCP as a prepolymer were investigated with the different nitramine oxidizer, HMX and HNIW. As a main oxidizer, HNIW could deliver higher burning rate, specific impulse and flame temperature than HMX. In addition, the introduction of AP as a co-oxidizer in PCP/Nitramine propellants could enhance burning rate, specific impulse and flame temperature, showing the lower pressure exponent with increasing the content of fine-sized AP, total solids and plasticizer. Moreover, we examined the temperature sensitivity on burning rate of propellants between 150 psia and 2,500 psia.

A Study on the Growth and Burning of Anodic Oxide Films on Al6061 Alloy During Anodizing at Constant Voltages (Al6061 합금의 정전압 아노다이징 피막의 형성거동 및 버닝에 대한 연구)

  • Moon, Sanghyuck;Moon, Sungmo;Song, Pungkeun
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, growth and burning behavior of 6061 aluminum alloy was studied under constant anodic voltages at various temperatures and magnetic stirring rates in 20% sulfuric acid solution by analysing I-t curves, measuring thickness and hardness of aluminum anodic oxide (AAO) films, observations of surface and cross-sectional images of AAO films. AAO films were grown continuously at lower voltages than 18.5V but burning occurred when a voltage more than 19V was applied in 20% H2SO4 solution at 20±0.5℃ and 200 rpm of magnetic stirring. The burning was always related with an extremely large increase of anodic current density with anodizing time, suggesting that high heat generation during anodizing causes deteriorations of AAO films by chemical reaction with acidic solutions. The burning resulted in decreases of film thickness and hardness, surface color brightened and formation of porous defects in the AAO films. The burning voltage was found to decrease with increasing solution temperature and decreasing magnetic stirring rate. The decreased burning voltages seem to be closely related with increased chemical reactions between AAO films and hydrogen ions.

Comparison of the Combustion Characteristics of Methane-Air and Gasoline-Air Mixtures (가솔린.메탄의 연소특성 비교)

  • Park, M.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.7-11
    • /
    • 2002
  • Comparison of the combustion characteristics of methane-air and gasoline-air mixtures has been conducted experimentally by a spherical bomb technique. The results indicate 1) the burning velocity of gasoline is slightly higher than that of methane, but their basic behavior of combustion characteristics, positive dependence on temperature and negative one on pressure, are the same, and 2) 20 vol.% addition of hydrogen to methane enhances the burning velocity by about 30%, but does not come to reverse the tendency of pressure dependence to that of pure hydrogen.

  • PDF

The Effect of Graphite Addition and Pouring Temperature on the Coating State in Vaccum Process (감압조형시 흑연첨가 및 주입온도가 피복상태에 미치는 영향)

  • 조성준
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.544-551
    • /
    • 1997
  • We tried to improve the coating capability of the coating material using an additive(hexagonal cystalline graphite) of 2%, 3%, 4% and 6% under various pouring temperature for the easy isolation of sand and coating material from the final product. As a result in case of using a 2% and 3% additive generally no burning state has been occurred under the low pouring temperature, but it has been gradually increased with the pouring temperature. On the other hand in case of using a 4% and 6% additive there has been no burning state through out the whole pouring temperature. From this result we could see that the best state of the final product without sand and coating material could generally be obtained if 4% and/or 6% of the crystalline graphite and the pouring temperature of 140$0^{\circ}C$$\pm$5$^{\circ}C$ would be used.

  • PDF

Measurement and Analysis of Instantaneous Surface Temperature and Unsteady Heat Flux at Combustion Chamber of DOHC Gasoline Engine ; Cylinder Linder (DOHC 가솔린기관의 연소실 벽표면순간온도 및 비정상 열유속 측정 및 해석(제3보 : 실린더 라이너에 관한 연구))

  • 위신환;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 2000
  • Instantaneous temperature probes were manufactured by pressing method. By using these probes, the instantaneous surface temperature and unsteady heat flux in the cylinder liner of DOHC engine were measured. The main results are as follows; ⅰ) the instantaneous surface temperature of cylinder liner are affected by the contact of piston ring as well as burning gas. ⅱ) the wall temperature of the siamese portion is much higher than other parts. ⅲ) it was shown that the rising trend of heat flux by burning gas are nearly limited to the 1/2-stroke distance from the top of cylinder liner.

  • PDF

Combustion Characteristics of Heavy Fuel Oil-water Emulsion

  • Kim Houng-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • This study is intended to check the flame temperature to raise in burning grade C heavy fuel oil and emulsion fuel oil in a boiler and to measure the concentration of Dry Shoot(DS) and Soluble Organic Fraction(SOF) after collecting the Particulate Matters (PM). The flames temperature in boiler was measured by burning grade C heavy oil and oil-water emulsion (C heavy oil $70\%\;and\;30\%$ of water) Combustion characteristics of two fuels was also compared by trapping particulate matters (PM) in exhaust gas and measuring the generated quantities of DS and SOF in fuel gas.