• Title/Summary/Keyword: burning speed

Search Result 107, Processing Time 0.027 seconds

The Effect of Hydrogen Chloride on the $NO_x$ Production in $H_2/HCl/Air$ Premixed Flame ($H_2/HCl/Air$ 예혼합 화염의 질소산화물 생성에서 염화수소의 영향)

  • Kwon, Young-Suk;Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.28-34
    • /
    • 2004
  • Numerical simulations of freely propagating flames burning $H_2/HCl/Air$ Air mixtures were performed at atmospheric pressure in order to understand the effect of hydrogen chloride on flame structures. The chemical and physical effects of hydrogen chloride on flame structures were observed. A chemical kinetic mechanism was developed, which involved 26 gas-phase species and 198 forward elementary reactions. Under several equivalence ratios the flame speeds were calculated and compared with those obtained from the experiments, the results of which were in good agreement. As hydrogen chloride as additive was added into $H_2/Air$ flame, the flame speed, radical concentration and NO production rate were decreased. The chemical effect of hydrogen chloride caused the reduction of radical concentration, and then the decrease of the net rate of NO production. It was found that the influence in the reduction of $EI_{NO}$ with the addition of hydrogen chloride was attributed more due to the chemical effect than the physical effect.

  • PDF

Lumbar burner and stinger syndrome in an elderly athlete

  • Wegener, Veronika;Stabler, Axel;Jansson, Volkmar;Birkenmaier, Christof;Wegener, Bernd
    • The Korean Journal of Pain
    • /
    • v.31 no.1
    • /
    • pp.54-57
    • /
    • 2018
  • Burner or stinger syndrome is a rare sports injury caused by direct or indirect trauma during high-speed or contact sports mainly in young athletes. It affects peripheral nerves, plexus trunks or spinal nerve roots, causing paralysis, paresthesia and pain. We report the case of a 57-year-old male athlete suffering from burner syndrome related to a lumbar nerve root. He presented with prolonged pain and partial paralysis of the right leg after a skewed landing during the long jump. He was initially misdiagnosed since the first magnet resonance imaging was normal whereas electromyography showed denervation. The insurance company refused to pay damage claims. Partial recovery was achieved by pain medication and physiotherapy. Burner syndrome is an injury of physically active individuals of any age and may appear in the cervical and lumbar area. MRI may be normal due to the lack of complete nerve transection, but electromyography typically shows pathologic results.

The Limit Compression Ratio of Knock Occurring by $R_{dH2}$ in the Heavy Duty Hydrogen-CNG Fueled Engine (대형 수소-천연가스 기관의 수소첨가율에 따른 노크발생 한계압축비)

  • Kim, Yong-Tae;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.84-91
    • /
    • 2006
  • A heavy duty hydrogen-natural gas fueled engine can obtain stable operation at ultra lean conditions and reduce emissions extremely. Reduction of $CO_2$ in its engine is one of the most benefit. In this study, rate of hydrogen addition($R_{dH2}$) and compression ratio($\varepsilon$) were investigated including performance of this engine. As results, it was found that phenomenon of pressure oscillation when increasing $R_{dH2}$ and $\varepsilon$, it means occurring knock. It consider that pressure oscillation was increased due to fast burning speed of hydrogen. Even if same compression ratio, pressure oscillation was remarkable increased according to increasing $R_{dH2}$. Therefore, limit compression ratio of knock occurring was reduced by increasing $R_{dH2}$.

Conceptual Design Study of Short-Range Scramjet Vehicle (단거리용 스크램젯 비행체의 개념 설계 연구)

  • Yang, In-Young;Park, Chul;Choi, Sang-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.459-462
    • /
    • 2010
  • A conceptual design is carried out for a two-stage scramjet cruise vehicle flying at Mach 4 to investigate its feasibility. The design goal is to deliver a payload of 225 kg and to fly a range of about 500 km. It is accelerated to its cruising speed by the first stage using a solid rocket of 52.9 kN thrust 3.59 m in length. The second stage cruises using a kerosene-burning scramjet engine of 6.85 kN thrust, the vehicle being 7.55 m in length and 508 mm in width. The vehicle has a take-off weight of 2.1 tons, flies 500 km in 6 minutes at 17 km altitude.

  • PDF

A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter (매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구)

  • Kang Jung Whun;Kim Man Young;Youn Gum Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.

COMBUSTION CHARACTERISTICS OF HOMOGENEOUS CHARGED METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • CHOI S. H.;CHO S. W.;JEONG D. S.;JEON C. H.;CHANG Y. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.323-332
    • /
    • 2005
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of a homogeneous charged methane-air mixture under various overall charge pressures, excess air ratios and ignition times. The flow characteristics, including the mean velocity and turbulence intensity, were analyzed with a hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer, a flame propagation image acquired by ICCD camera and exhaust emissions measured by 2-valve gas chromatography were used to investigate effects of initial pressures, excess air ratios and ignition times on the combustion characteristics. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to a near-zero value after 3000 ms and that the combustion duration was shorten and the flame speed and laminar burning velocity had the highest value under the condition of an excess air ratio of 1.1, an overall charge pressure of 0.15 MPa and an ignition time of 300 ms in the present study. The $CO_2$ concentration was proportional to the ignition time and overall charge pressure, the $CO_2$ concentration was proportional to the excess air ratio, and the UHC concentration was inversely proportional to the ignition time and overall charge pressure.

Statistical Analysis for Chemical Characterization of Fall-Out Particles (강하분진의 화학적 특성파악을 위한 통계학적 해석)

  • Kim, Hyeon-Seop;Heo, Jeong-Suk;Kim, Dong-Sul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.631-642
    • /
    • 1998
  • Fall-out particles were collected by the modified British deposit gauges at 35 sampling sites in Suwon area from January to November, 1996. Twenty chemical species (Al. Ba, Cd, Cr, K, Pb, Sb, Zn, Cu, Fe, Ni, V, F-, Cl-, NO3-, 5042-, Na+, NH4+, Mg2+, and Ca2+) were analyzed by AAS and If. The purposes of this study were to estimate qualitatively various emission sources of the fell-out particle by applying multivariate statistical techniques such as factor analysis, multiple regression analysis, and discriminant analysis. During the study, outlier sites were determined by a z-score method. Cl-, Na+, Mg2+, and SO42- were highly correlated due to their common marine related source. Wind speed was the most influential factor for the deposition fluxes of the particle itself and all the chemical species as well. When applying the factor analysis, 8 source patterns were qualitatively obtained, such as marine source, soil source, oil burning source, Cr related source, tire source, Cd related source, agriculture source, and F- related source. As a result of the multiple regression analysis, we could suggest that some chemical compounds may possibly exist in the form of CaSO4, NaN03, NaCl, MgC12, (NH4)2SO4, NaF, and CaCl2 in the fall-out particles. Finally, spatial and seasonal classification study performed by a discriminant analysis showed th.at SO42-, Ca2+, Cl-, and Fe were dominant in the group of spatial pattern; however, SO42-, Cl-, Al, and V were in the group of seasonal pattern.

  • PDF

An Experimental Study on Variations of Exhaust Gas Temperature and Concentration with Synthetic Gas Combustion in Exhaust Manifold (배기관에서의 합성가스 연소에 따른 배기가스 온도 및 농도 변화에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Yang, Seung-Il;Song, Chun-Sub;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.56-62
    • /
    • 2008
  • A synthetic gas reformed from hydrocarbon-based fuels consists of $H_2$, CO and $N_2$. Hydrogen contained in the synthetic gas is a very useful species in chemical processes, due to its wide flammability range and fast burning speed. The ESGI (Exhaust Synthetic Gas Injection) technology is developed to shorten the light-off time of three way catalysts through combustion of the synthetic gas in the exhaust manifold during the cold start period of SI engines. Before the ESGI technology is applied to the test engine, the authors set a test rig that consists of gas temperature and composition controllers, an exhaust pulse generator and an exhaust manifold with a visualization window, in order to optimize the point and conditions of injection of the synthetic gas. Through measuring burned gas temperatures and taking photographs of synthetic gas combustion at the outlet of the exhaust manifold, the authors tried to find the optimal injection point and conditions. Analysis of burned gas composition has been performed for various $O_2$ concentrations. As a result, when the synthetic gas is injected at the port outlet of the cylinder No. 4 and $O_2$ concentration exceeds 4%, combustion of the synthetic gas is strong and effective in the exhaust manifold.

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.