• Title/Summary/Keyword: bundle model

Search Result 236, Processing Time 0.025 seconds

Development of Analysis Method and Experimental Equipment for Fatigue Durability of Automotive Wire Harness System (자동차 와이어 하네스 피로내구 해석 방법론 및 시험기기 개발)

  • Lee, Heung-Shik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • In this study, the methodology for the fatigue life prediction using finite element method(FEM) in wire, bundle and assembly level of the wire harness system and the development of the fatigue life test machine for the numerical analysis are investigated. To obtain stress-life(S-N) histories of the componential wires of the system, five kinds of wires are prepared and applied to the repeated bending motion using developed fatigue life test equipment. Equivalent model of the wire from the rule of mixtures theory is used for the material modeling of sheath and wire core combination. Contact conditions among the wires, taping conditions are established through the bundle level test and numerical bundle analysis. Wire and bundle level results are adopted for the assembly level analysis. For the assembly level analysis, real wire harness system including bundle and grommet is numerically modeled and applied contact condition between wires with real opening motion. The fatigue life more than 700,000 cycles of the assembly is obtained from the FEM, and it is confirmed that the result has good agreement with the experimental result.

WOBR : A WebDAV-Based OSGi Bundle Repository Supporting Effective Group Access (WOBR : 효과적인 그룹별 접근을 지원하는 웹데브 기반의 OSGi 번들 저장소)

  • Park, Jong-Moon;Park, Yang-Soo;Lee, Myung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.521-533
    • /
    • 2010
  • The OSGi framework is a java-based service platform that can be remotely managed, providing an application life cycle management model, a service registry and an execution environment. Based on the framework, various OSGi layers, APIs, and services have been defined. A bundle is an application that can be executed in the OSGi framework, deployed through a bundle repository. Usually, bundles in the repository are accessible via a designated web page. Unfortunately, the current bundle repositories do not provide any kind of group access services and dynamic bundle installation and deployment. In this paper, we describe a WebDAV-Based OSGi bundle repository named WOBR, which supports effective group-based accesses. WOBR is composed of a WOBR bundle repository, a management bundle and an access bundle that interact with the bundle repository. The management bundle is for configuration of the WOBR bundle repository, managing group access facility to the repository. The access bundle provides access to the repository and search mechanism for the bundles. Additionally, it provides the life cycle management of the installed bundles on the local environment.

A Study on Thermal-hydraulic Characteristics for Nuclear Fuel Rod Bundle (핵연료 집합체에서의 열유동 특성에 관한 연구)

  • Yoo, S.Y.;Chung, M.H.;Kim, M.W.;Choi, YJ.;Kim, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.3-8
    • /
    • 2001
  • For the successful design of nuclear reactor, it is very important to investigate thermal-hydraulic characteristics of fuel rod bundle. Fluid flow and heat transfer in the non-circular cross-section of nuclear fuel rod bundle are different from those found in common circular tube. And complex three dimensional flow including secondary and vortex flow, is formed around the bundles. The purpose of this research is to examine how geometries and flow conditions affect heat transfer in fuel rod bundle. Design data for nuclear fuel rod bundle and structure are surveyed, and $3{\times}3$ sub-channel model is adopted in this study. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions.

  • PDF

Negative Corona Onset Characteristic of the UHV Conductors Based on the Corona Cage

  • Liu, Yun-Peng;Zhu, Lei;Lv, Fang-Cheng;Xie, Xiongjie
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2089-2097
    • /
    • 2014
  • Negative corona onset characteristics of the stranded conductors based on the ultra-high voltage (UHV) corona cage were studied in the paper. Based on the corona self-sustaining criterion in extreme uneven electric fields and the secondary emission process of the photoelectrons, the corona onset calculation model in the UHV corona cage is established and the corona current tests of the single LGJ900-75, 6 bundle LGJ900-75, 8 bundle LGJ400-35 conductors in dry and rain conditions were done in the UHV corona cage, and the rain rates are 2.4 mm/h, 20 mm/h and 30 mm/h. Corona onset electric field strength is gained by E-I tangent method, and the onset electric field strength in dry condition proves that the calculation model can be used to calculate the corona onset characteristics of the bundle conductors in the UHV corona cage. A further analysis proves that: the negative corona onset voltage of the conductor increases with the bundle number and the diameter of the sub conductor, but decreases with the bundle space in the corona cage. The onset electric field strength is influenced little by bundle space and bundle number, but decreases with the increase of the diameter of the sub-conductor. The surface irregularity coefficient decreases with the rain rate.

Application of the "Law of the Wall" to Predict the Heat Transfer for Turbulent flow in a Rod Bundle (봉다발의 열전달 예측을 위한 "벽면의 법칙(Law of the Wall)" 적용)

  • 김내현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2111-2118
    • /
    • 1992
  • In this study, an analytic model is developed to predict Nusselt numbers for turbulent flow in a rod bundle. Flow channel area is divided into several element channels, and simple algebraic equations of universal velocity and temperature profiles are integrated over each element channel. The integral equations are then added to yield an analytic expression for the nusselt number of a rod bundle. The analytic model reasonably predicts the available heat transfer data.

R-134a Flow Boiling on a Plain Tube Bundle (평활관군의 R-134a 흐름비등에 관한 연구)

  • 김종원;김정오;김내현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from $8\;kg/m^2s$ to $26\;kg/m^2s$ and heat flux from $10\;kW/m^2s$ to $40\;kW/m^2s$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which satisfactorily () predicted the data. Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

  • PDF

The Impregnation of Thermoplastic Resin into a Unidirectional Fiber Bundle (열가소성 수지 복합재료에서의 수지 함침)

  • Kim, Tae-Uk;Jeon, Ui-Jin;Lee, U-Il
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.163-168
    • /
    • 1988
  • Impregnation of molten thermoplastic resin into continuous unidirectional fiber bundles was investigated. The degree of impregnation is defined as the ratio between the number of impregnated fibers and the total number of fibers of a bundle. The degree of impregnation was modeled as a function of time, impregnation pressure, temperature and tow size assuming the radial inward flow through the fiber bundle is governed by the Darcy's law. The permeability was assumed to be constant. Experiments were performed to evaluate the validity of the medel. Today's T300 graphite fiber bundles and Polyetheretherketone(PEEK) resin was used. A fiber bundle and resin powder were put into a mold and pressure and temperature were applied. After a predetermined time, the sample was taken out and microphotographs of the cross-section were taken. From the microphotographs, the number of impregnated fibers was counted and then the degree of impregnation was determined. Experiments were also performed for different tow sizes. Good agreements were found between the model and the experiments rendering a confidence in the model.

  • PDF

Effect of Lateral and Posterior Placement of Single-Bundle and Double-Bundle ACL Reconstructions on Tibial Internal Rotation During Single-Leg Landing (전방십자인대 한다발재건술의 후외측다발 재건 및 두다발재건술이 외발착지 동작 시에 경골내회전에 미치는 영향)

  • Shin, Choong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.517-523
    • /
    • 2011
  • Anterior cruciate ligament (ACL) injuries are treatedwith surgical reconstruction. Although ACL consists of two functional bundles, only the anteromedial bundle is surgically reconstructed, and the effect of the reconstruction of the posterolateral bundle is unknown. The purpose of this study is to investigate the role of the posterolateral bundle and the effect of double-bundle reconstruction during single-leg landing. A 3D dynamic knee with various ACL reconstructed models was created using MRI, and single-leg landing motion was simulated using in-vivo human experimental data. The results showed that the lateral shift of the tibial insertion of the anteromedial bundle and the posterolateral bundle of the ACL constrain the tibial internal rotation more efficiently than a single anteromedial bundle can. In addition, double-bundle ACL reconstruction is less sensitive to inaccuracies in the tibial tunnel placement.

Improvement of crossflow model of MULTID component in MARS-KS with inter-channel mixing model for enhancing analysis performance in rod bundle

  • Yunseok Lee;Taewan Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4357-4366
    • /
    • 2023
  • MARS-KS, a domestic regulatory confirmatory code of Republic of Korea, had been developed by integrating RELAP5/MOD2 and COBRA-TF. The integration of COBRA-TF allowed to extend the capability of MARS-KS, limited to one-dimensional analysis, to multi-dimensional analysis. The use of COBRA-TF was mainly focused on subchannel analyses for simulating multi-dimensional behavior within the reactor core. However, this feature has been remained as a legacy without ongoing maintenance. Meanwhile, MARS-KS also includes its own multidimensional component, namely MULTID, which is also feasible to simulate three-dimensional convection and diffusion. The MULTID is capable of modeling the turbulent diffusion using simple mixing length model. The implementation of the turbulent mixing is of importance for analyzing the reactor core where a disturbing cross-sectional structure of rod bundle makes the flow perturbation and corresponding mixing stronger. In addition, the presence of this turbulent behavior allows the secondary transports with net mass exchange between subchannels. However, a series of assessments performed in previous studies revealed that the turbulence model of the MULTID could not simulate the aforementioned effective mixing occurred in the subchannel-scale problems. This is obvious consequence since the physical models of the MULTID neglect the effect of mass transport and thereby, it cannot model the void drift effect and resulting phasic distribution within a bundle. Thus, in this study, the turbulence mixing model of the MULTID has been improved by means of the inter-channel mixing model, widely utilized in subchannel analysis, in order to extend the application of the MULTID to small-scale problems. A series of assessments has been performed against rod bundle experiments, namely GE 3X3 and PSBT, to evaluate the performance of the introduced mixing model. The assessment results revealed that the application of the inter-channel mixing model allowed to enhance the prediction of the MULTID in subchannel scale problems. In addition, it was indicated that the code could not predict appropriate phasic distribution in the rod bundle without the model. Considering that the proper prediction of the phasic distribution is important when considering pin-based and/or assembly-based expressions of the reactor core, the results of this study clearly indicate that the inter-channel mixing model is required for analyzing the rod bundle, appropriately.

Visual SLAM using Local Bundle Optimization in Unstructured Seafloor Environment (국소 집단 최적화 기법을 적용한 비정형 해저면 환경에서의 비주얼 SLAM)

  • Hong, Seonghun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2014
  • As computer vision algorithms are developed on a continuous basis, the visual information from vision sensors has been widely used in the context of simultaneous localization and mapping (SLAM), called visual SLAM, which utilizes relative motion information between images. This research addresses a visual SLAM framework for online localization and mapping in an unstructured seabed environment that can be applied to a low-cost unmanned underwater vehicle equipped with a single monocular camera as a major measurement sensor. Typically, an image motion model with a predefined dimensionality can be corrupted by errors due to the violation of the model assumptions, which may lead to performance degradation of the visual SLAM estimation. To deal with the erroneous image motion model, this study employs a local bundle optimization (LBO) scheme when a closed loop is detected. The results of comparison between visual SLAM estimation with LBO and the other case are presented to validate the effectiveness of the proposed methodology.