• Title/Summary/Keyword: bump

Search Result 654, Processing Time 0.023 seconds

Electromigration of Sn-3.5 Solder Bumps in Flip Chip Package (플립칩 패키지내 Sn-3.5Ag 솔더범프의 electromigration)

  • 이서원;오태성
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.81-86
    • /
    • 2003
  • Electromigration of Sn-3.5Ag solder bump was investigated using flip chip specimens which consisted of upper Si chip and lower Si substrate. While the resistance of the flip chip sample did not almost change until the time right before the failure, the resistivity increased abruptly at the moment when complete failure of the solder joint occurred in the flip chip sample. At current densities of $3\times 10^4$$4\times 10^4$A/$\textrm{cm}^2$, the activation energy for electromigration of the Sn-3.5Ag solder bump was characterized as ∼0.7 eV. Failure of the Sn-3.5Ag solder bump occurred at the solder/UBM interface due to the formation and propagation of voids at cathode side of the solder bump.

  • PDF

A Study on the Suppression of Instability Whirl of a Foil Bearing for High-Speed Turbomachinery beyond the Bending Critical Speed (고속 회전 터보 기기용 포일 베어링의 불안정 진동 제진에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.7-14
    • /
    • 2002
  • A new foil bearing, ViscoElastic Foil Bearing(VEFB) is suggested with the need for a high damping foil bearing. Sufficient damping capacity is a key technical hurdle to super-bending-critical operation as well as widespread use of foil bearings into turbomachinery. The super-bending-critical operation of the conventional bump foil bearing and the VEFB is examined, as well as the structural dynamic characteristics. The structural dynamic test results show that the equivalent viscous damping of the VEFB is much larger than that of the bump bearing, and that the structural dynamic stiffness of the VEFB is comparable or larger than that of the bump bearing. The results of super-bending-critical operation of the VEFB indicate that the enhanced structural damping of the viscoelastic foil dramatically reduces the vibration near the bending critical speed. With the help of increased damping resulting from the viscoelasticity, the suppression of the asynchronous orbit is possible beyond the bending critical speed.

Method of Solving Oxidation Problem in Copper Pillar Bump Packaging Technology of High Density IC (고집적 소자용 구리기둥범프 패키징에서 산화문제를 해결하기 위한 방법에 대한 연구)

  • Jung, One-Chul;Hong, Sang-Jeen;Soh, Dae-Wha;Hwang, Jae-Ryong;Cho, Il-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.919-923
    • /
    • 2010
  • Copper pillar tin bump (CPTB) was developed for high density chip interconnect technology. Copper pillar tin bumps that have $100{\mu}m$ pitch were introduced with fabrication process using a KM -1250 dry film photoresist (DFR), copper electroplating method and Sn electro-less plating method. Mechanical shear strength measurements were introduced to characterize the bonding process as a function of thermo-compression. Shear strength has maximum value with $330^{\circ}C$ and 500 N thenno-compression process. Through the simulation work, it was proved that when the copper pillar tin bump decreased in its size, it was largely affected by the copper oxidation.

ISB Bonding Technology for TSV (Through-Silicon Via) 3D Package (TSV 기반 3차원 반도체 패키지 ISB 본딩기술)

  • Lee, Jae Hak;Song, Jun Yeob;Lee, Young Kang;Ha, Tae Ho;Lee, Chang-Woo;Kim, Seung Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.857-863
    • /
    • 2014
  • In this work, we introduce various bonding technologies for 3D package and suggest Insert-Bump bonding (ISB) process newly to stack multi-layer chips successively. Microstructure of Insert-Bump bonding (ISB) specimens is investigated with respect to bonding parameters. Through experiments, we study on find optimal bonding conditions such as bonding temperature and bonding pressure and also evaluate in the case of fluxing and no-fluxing condition. Although no-fluxing bonding process is applied to ISB bonding process, good bonding interface at $270^{\circ}C$ is formed due to the effect of oxide layer breakage.

Effect of Joule Heating on Electromigration Characteristics of Sn-3.5Ag Flip Chip Solder Bump (Joule열이 Sn-3.5Ag 플립칩 솔더범프의 Electromigration 거동에 미치는 영향)

  • Lee, Jang-Hee;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Byun, Kwang-Yoo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.91-95
    • /
    • 2007
  • Electromigration characteristics of Sn-3.5Ag flip chip solder bump were analyzed using flip chip packages which consisted of Si chip substrate and electroplated Cu under bump metallurgy. Electromigration test temperatures and current densities peformed were $140{\sim}175^{\circ}C\;and\;6{\sim}9{\times}10^4A/cm^2$ respectively. Mean time to failure of solder bump decreased as the temperature and current density increased. The activation energy and current density exponent were found to be 1.63 eV and 4.6, respectively. The activation energy and current density exponent have very high value because of high Joule heating. Evolution of Cu-Sn intermetallic compound was also investigated with respect to current density conditions.

Improvement of Film Cooling Performance of a Slot on a Flat Plate Using Coanda Effect (코안다 효과를 이용한 평판 슬롯의 막냉각 성능 향상)

  • Kim, Gi Mun;Kim, Ye Jee;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.2
    • /
    • pp.5-10
    • /
    • 2017
  • In this study, the Coanda effect inducing bump was applied to improve the film cooling effectiveness on the flat plate with $30^{\circ}$ and $45^{\circ}$ angled rectangular slots. The slot length to width ratio was 6. A cylindrical cap shaped structure, called Coanda bump, was installed at the exit of the slot to generate Coanda effect. The width and height of the bump was 10.5 mm and 1 mm, respectively. The film cooling effectiveness was measured at the fixed blowing ratio, M=2.0, using pressure sensitive paint (PSP) technique. The mainstream velocity was 10 m/s and the turbulence intensity was about 0.5%. Results showed that the film cooling effectiveness for case of $30^{\circ}$ angled slot was higher than that of $45^{\circ}$ angled slot. It was found that there was no positive effect of Coanda effect on the overall averaged film cooling effectiveness for the $30^{\circ}$ angled slot. On the other hand, for the $45^{\circ}$ angled slot, the film cooling effectiveness was improved with the installation of the Coanda bump.

Formation of Indium Bumps on Micro-pillar Structures through BCB Planarization (BCB 평탄화를 활용한 마이크로 기둥 구조물 위의 인듐 범프 형성 공정)

  • Park, Min-Su
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.57-61
    • /
    • 2021
  • A formation process of indium bump arrays on micro-pillar structures is proposed. The space to form indium bump on the narrow structures can be secured applying the benzocyclobutene (BCB) planarization and its etch-back process. We exhibit a detailed overview of the process steps involved in the fabrication of 320×256 hybrid camera sensor for short-wavelength infrared (SWIR) detection. The shear strength of the BCB, which has undergone the different processes, is extracted by quartz crystal microbalance measurement. The shear strength of the BCB is three orders of magnitude higher than that of the indium bump itself. The measured dark current distribution of the fabricated SWIR camera sensor indicates the suggested process of indium bumps can be useful for embodying highly sensitive infared camera sensors.

Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package (이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계)

  • Nam, Hyun-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

Numerical Analysis of Warpage Induced by Thermo-Compression Bonding Process of Cu Pillar Bump Flip Chip Package (수치해석을 이용한 구리기둥 범프 플립칩 패키지의 열압착 접합 공정 시 발생하는 휨 연구)

  • Kwon, Oh Young;Jung, Hoon Sun;Lee, Jung Hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.443-453
    • /
    • 2017
  • In flip chip technology, the conventional solder bump has been replaced with a copper (Cu) pillar bump owing to its higher input/output (I/O) density, finer pitch, and higher reliability. However, Cu pillar bump technology faces several issues, such as interconnect shorting and higher low-k stress due to stiffer Cu pillar structure when the conventional reflow process is used. Therefore, the thermal compression bonding (TCB) process has been adopted in the flip chip attachment process in order to reduce the package warpage and stress. In this study, we investigated the package warpage induced during the TCB process using a numerical analysis. The warpage of the TCB process was compared with that of the reflow process.

Fabrication of Bump-type Probe Card Using Bulk Micromachining (벌크 마이크로머시닝을 이용한 Bump형 Probe Card의 제조)

  • 박창현;최원익;김용대;심준환;이종현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.661-669
    • /
    • 1999
  • A probe card is one of the most important pan of test systems as testing IC(integrated circuit) chips. This work was related to bump-type silicon vertical probe card which enabled simultaneous tests for multiple semiconductor chips. The probe consists of silicon cantilever with bump tip. In order to obtain optimum size of the cantilever, the dimensions were determined by FEM(finite element method) analysis. The probe was fabricated by RIE(reactive ion etching), isotropic etching, and bulk-micromachining using SDB(silicon direct bonding) wafer. The optimum height of the bump of the probe detemimed by FEM simulation was 30um. The optimum thickness, width, and length of the cantilever were 20 $\mum$, 100 $\mum$,and 400 $\mum$,respectively. Contact resistance of the fabricated probe card measured at contact resistance testing was less than $2\Omega$. It was also confirmed that its life time was more than 20,000 contacts because there was no change of contact resistance after 20,000 contacts.

  • PDF