• 제목/요약/키워드: bulking

Search Result 211, Processing Time 0.021 seconds

Composting of Compostable Household Wastes in a Home Composter without Additives (소형 퇴비화용기에 의한 가정쓰레기의 무첨가 퇴비화)

  • Seo, Jeoung-Yoon;Lee, Geun-Sun;Choi, Hyoung-Sub
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.160-163
    • /
    • 1998
  • In this study, the compostable household wastes from a house were composted in a home composter without adding any bulking agent and microorganisms. Every day wastes of 1kg were added to the composter during the experimental period. The following results were obtained : 1. Each component of the compostable household wastes generated every day showed very difference. 2. While composting proceeded at room temperature by suppling 1,1322 l air per hour, the composting material maintained the water content of 74.36 ${\sim}$ 85.14%, whereas while composting proceeded at $45^{\circ}C$ by suppling 427 l air per hour, the compost had optimal water content. The electric power of 132kwh a month was required by operating the composting unit at $45^{\circ}C$. 3. During 20 day, decomposition of 28% at room temperature and 44% at $45^{\circ}C$ were obtained respectively. 4. The accumulation of inorganic compound contents were not shown during the composting period, However, the content of salt and Cd was very high. Therefore, using the compost for agriculture has to be careful. 5. The biofilter removed the odorous substants efficiently at the room temperature due to increasing surface loading.

  • PDF

Bacterial Community Structure of Food Wastewater Treatment System Combined with Rotating Biological Contactor and Tapered Aeration Reactor (회전접촉장치와 점감포기 반응조를 이용한 식품폐수 처리시설의 세균군집 구조)

  • Jeong, Soon-Jae;Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • A pilot-scale wastewater treatment plant combined with rotating biological contactor and tapered aeration reactors was operated with the wastewater discharged from a food factory for 5 months. The bacterial communities of this plant were investigated by terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analysis of 16S rRNA genes. In spite of high concentration of nitrogen and phosphorus as well as organic carbon, removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus was 98%, 93%, and 95%, respectively. Bacterial community at the initial operation stage was clearly distinguished from that of the stable operation stage. The most predominant phylum in the sample of stable stage was Bacteroidetes. Major population of operation period was Haliscomenobacter, Sphaerotilus, and candidate division TM7, which were classified as filamentous bacteria. However, sludge bulking caused by these bacteria was not observed. The population that has a close relationship with Haliscomenobacter increased during the stable operation stage, emerging as the most predominant group. These results suggest that the filamentous bacteria participated in nutrient removal when using rotating biological contactor and tapered aeration reactor.

Effect of food waste properties on methane production (음식물쓰레기의 특성이 메탄생성량에 미치는 영향분석)

  • Lee, Soo Gwan;Choi, Hong Lim;Lee, Joon Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.11-22
    • /
    • 2014
  • The buffer capacity of food waste lowers during the collecting and transportation period. Food waste usually shows deficiency of micro nutrients especially molybdenum(Mo) and cobalt(Co). Therefore, food waste can be considered as a good mixture of livestock waste to enhance methane production. The objective of this study was to investigate the correlation between properties of substrates (local food waste and livestock manure) and methane yields for successive anaerobic fermentation process and its stable management. Food wastes were taken at an intermediate storage or treatment system provided by eight local authorities (Gangnam, Gangdong, Gwanak, Guro, Dongjak, Songpa, Yeongdeungpo, and Younsan) in Seoul. The solid content and potential methane yield of food wastes were average of 16% and $446.6STP-m{\ell}/g-VS$ (range from 334.8 to $567.5STP-m{\ell}/g-VS$) respectively. As for the beef cattle manure, the solid content and potential methane yield had an average of 26% and $280.6STP-m{\ell}/g-VS$ respectively. Potential methane yield had a positive correlation with fat content, and hydrogen content and a negative correlation with carbohydrate content ($r^2>0.8$). Therefore, the potential methane yield can be predicted based on the substrate characterization results with reasonable accuracy. Further research may be needed to investigate the relation of the properties of the mixture substrate and methane production rate. The mixtures may include food waste, livestock waste, and bulking agents (saw dust, rice hull, or agricultural byproducts etc.) to determine best combination of these substrates for maximum methane production rate.

Development of a psychrophilic-SCAR marker for Pleurotus eryngii (큰느타리버섯의 저온적응성 형질에 관련된 SCAR Marker 개발)

  • Kim, Su Chul;Hwang, Hye Sung;Cho, Yun Jun;Kim, Hye Su;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2013
  • Genomic DNAs of psychrophilic strains of Pleurotus eryngii were analyzed by randomly amplified polymorphic DNA (RAPD) using OP-A, OP-B, OP-L, OP-P, OP-R and OP-S3 primers to develop the strain-specific DNA marker. A unique DNA fragment with the size of 480 bp was yielded by OP-S3 primer from the psychrophilic strain. A sequence characterized amplified region (SCAR) marker, designated as OP-S3-1, was designed on the basis of the determined sequence. The PCR analysis with the OP-S3-1 primer showed that this SCAR marker can clearly distinguish the psychrophilic strains from the control strains.

Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.736-743
    • /
    • 2015
  • Organic matter plays important roles in soil ecosystem in terms of carbon and nitrogen cycles. Due to recent concerns on climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. It is necessary to understand behavior of soil carbon for evaluating decomposition or sequestration of organic matter and analyzing potential carbon decomposition pattern about the kinds of organic matter sources to cope with well. In order to evaluate decomposition of soil carbon according to organic material during cultivating rice in paddy field, we treated organic material such as hairy vetch, rice straw, oil cake fertilizer, and manure compost at $50{\times}50{\times}20cm$ blocks made of wood board, and analyzed carbon contents of fulvic acid and humic acid fraction, and total carbon periodically in 2013 and 2014. Soil sampling was conducted on monthly basis. Four Kinds of organic matter were mixed with soil in treatment plots on 2 weeks before transplanting of rice. The treatment of animal compost showed the highest changes of total carbon, which showed $7.9gkg^{-1}$ in May 2013 to $11.6gkg^{-1}$ in October 2014. Fulvic acid fraction which is considered to easily decompose ranged from 1 to $2gkg^{-1}$. Humic acid fraction was changed between 1 to $3gkg^{-1}$ in all treatments until organic material had been applied in 2014. From May to August in the second year, the contents of humic acid fraction increased to about $4gkg^{-1}$. The average of humic fraction carbon at treatments of animal compost was recorded highest among treatments during two years, $2.1gkg^{-1}$. The treatment of animal compost has showed the lowest ratio of fulvic acid fraction, humic acid fraction compared with other treatments. The average ratio of fulvic fraction carbon in soil ranged from 16 to 20%, and humic fraction carbon ranged from 19 to 22%. In conclusion, animal compost including wood as bulking agent is superior in sequestrating carbon at agricultural land to other kinds of raw plant residue.

Bioconversion of Rare Sugars by Isomerases and Epimerases from Microorganisms (미생물 유래 당질관련 이성화효소 및 에피머효소를 이용한 희소당 생물전환)

  • Kim, Yeong-Su;Kim, Sang Jin;Kang, Dong Wook;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1545-1553
    • /
    • 2018
  • The International Society of Rare Sugars (ISRS) defines rare sugars as monosaccharides and their derivatives that rarely occur in nature. Rare sugars have recently received much attention because of their many uses including low-calorie sweeteners, bulking agents, and antioxidants, and their various applications including as immunosuppressants in allogeneic rat liver transplantation, as potential inhibitors of various glycosidases and microbial growth, in ischemia-reperfusion injury repair in the rat liver, and in segmented neutrophil production without detrimental clinical effects. Because they rarely exist in nature, the production of rare sugars has been regarded as one of the most important research areas and, generally, they are produced by chemical synthesis. However, the production of rare sugars by bioconversion using enzymes from microorganisms has been receiving increased attention as an environmentally friendly alternative production method. In particular, D-allulose, D-allose, and D-tagatose are of interest as low-calorie sweeteners in various industries. To date, D-tagatose 3-epimerase, D-psicose 3-epimerase, and D-allulose 3-epimerase have been reported as D-allulose bioconversion enzymes, and L-rhamnose isomerase, Galactose 6-phosphate isomerase, and Ribose 5-phosphate isomerase have been identified as D-allose production enzymes. Elsewhere, D-tagatose has been produced by L-arabinose isomerase from various microorganisms. In this study, we report the production of D-allulose, D-allose, and D-tagatose by microorganism enzymes.

Analysis of Bulking Agent Reduction Effect by using Previously Produced Compost (생산퇴비 재사용을 통한 수분조절재 절감효과 분석)

  • Lee, Min-Ho;Phonsuwan, Malinee;Moon, Byeong-Eun;Wang, Eun-Chul;Kim, Hyeon-Tae
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.139-147
    • /
    • 2017
  • This study was carried out in order to reduce the amount of sawdust for recycling the generated manure from livestock farms, and to investigate the effects on the reducing usage of sawdust and quality of produced compost. To do this, a cylindrical horizontal composting device were used in the experiments and compost was analyzed for judging produce compost quality. The experiment was carried out separately under different cases of operational control conditions. The first case was produced by using sawdust and pig manure mixture(Test-1); the second case was produced by using sawdust, pig manure and the previously produced compost(Test-2). In the second case, Except for some heavy metal content, The water content and C/N ratio were found to be suitable for fertilizer process specification of the RDA(Rural Development Administration) and it was found to reduce the sawdust 1.25tons usage.

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.

Effects of Altitude and Planting Time on Tuber Bulking of Potato (감자 고랭지 재배 시 표고 및 파종시기에 따른 괴경의 비대반응)

  • Kim, Chung-Guk;Ok, Hyun-Chung;Jeong, Jin-Chol;Hur, On-Sook;Seo, Jong-Ho;Jeong, Kwang-Ho;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.418-423
    • /
    • 2012
  • Field experiments were carried out to improve the cultural practice of potato by analysing its tuberization patterns. Tuberization patterns affected by different altitudes was analyzed at two potato cultivation regions, Jinbu (600 m) and Daegwallyung (800 m) using two potato cultivars, 'Superior' and 'Atlantic'. To analyse tuberization patterns affected by different planting time, seed potatoes were planted at every 10 days from April 19 to May 19 in Daegwallyung. Total dry weight was greater in plant grown at the altitude of 800 m than 600 m during the entire growth period and the highest increase was observed at the early growth period, July 6, comparing to other growth period. The total dry weight was the greatest at 110~112 days after planting (DAP) at the altitude of 800 m and 108~111 DAP at 600 m. There was no significant differences between altitudes and between cultivars. Tuber dry weight per plant at the altitude of 600 m was lower than 800 m on July 6 (58 DAP), but it increased rapidly from July 21 (73 DAP). At both altitudes, the increase of tuber dry weight per plant from July 6 to August 8 was higher than the other growth period. The time of growth period at which tuber dry weight per plant was the highest was similar at both altitudes that was 118~125 DAP at the altitude 800 m and 118~124 DAP at the altitude 600 m. Dry weight per tuber at the altitude 800m was higher than 600 m due to the number of tubers per plant. A higher increase of crop growth rate (CGR) was shown at the altitude 600 m on July 6 (58 DAP), comparing to at 800 m. The highest tuber dry weight per plant of each cultivar was shown when the planting time was April 29 for 'Superior' and was April 19 for 'Atlantic'. Both the tuber dry weight of plant and the total dry weight were lower at a later planting time. Dry weight per tuber increased quickly during the period between June 30 to August 8. Tuberization period was shortened as the planting time was delayed.

Assays of Maturity and Antifungal Activity against Plant Pathogen during the Animal Manure Composting Process (가축분 퇴비화 과정에서 부숙도 및 퇴비의 항균활성 검정)

  • Seo, Myung-Chul;So, Kyu-Ho;Park, Won-Mok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.285-294
    • /
    • 1999
  • Changes of chemico-physical properties and mturitiy during pig manure composting were analysed using three kinds of bulking agents with rice hull(T1), rice hull and extruding hull mixture (T2, 1:1, v/v), and extruding hull(T3). During composting process, temperature of T1, T2 and T3 were maintained over $50^{\circ}C$ for 31, 21, and 35 days respectively. Organic matter content of each treatment was decreased from 82.2%, 82.0%, and 82.8% to 70.5%, 68.9% and 69.7% and pH increased to 8.85, 9.91, and 8.80, respectively. Total nitrogen content of all treatments gradually decreased, but C/N ratio, phosphorous, and potassium content did not, show any changes during composting process. Both germination rate and early growth were tested using radish seeds for composting maturity. From those results, it was concluded that all treatments were stabilized after 45th day and extruding hull(T3) added compost was superior to others. The test of suppressive effect showed that all treatment have no effect against Fusarium oxysporum, Alternaria altemata, Botrytis cinerea. Compost supplemented with rice hull showed an inhibitory effect after 30th days, while compost supplemented with rice hull and extruding hull(T2) had an inhibitory effect during all period against Rhizoctonia solani. But treatment with extruding hull(T3) added compost did not have any inhibitory effect against Rhizoctonia solani. Only 63th samples in T1 and T2 treatment showed inhibitory effect against Colletoerichum gloeosporioides. However, T3 did not. Suppressive effect of extracts from 67 kinds of composts was investigated in vitro against plant pathogens, such as Fusauum oxysporum. Alternaria alternata, Colletotrichum gloeospoioides, Rhizoctonia solani, and Botrytis cinerea. Thirty two of them showed inhibitory effect against more than one phytopathogen, nine against one pathogen, four against two, six against three, six against four, and seven against five.

  • PDF