• 제목/요약/키워드: buildings

검색결과 9,973건 처리시간 0.038초

2층 조적조 건축물의 지진 응답에 대한 실험연구 (An Experimental Study on Dynamic Response of Two Story Masonry Buildings)

  • 최성모;권기혁;노현섭
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.399-406
    • /
    • 2001
  • Most unreinforced masonry buildings have a lot of structural faults under the lateral load. Therefore, considering the heavy damage of URM buildings caused by the earthquakes, it may be necessary for the effective seismic code and reinforcing method. This paper describes the research-in-progress on an experiment program fur the investigation of the relatively simple and reliable analytical model to estimate dynamic response of URM buildings and briefly reviews the concept of the reinforcement fur damaged URM buildings.

  • PDF

초고층 주거건물 외피시스템의 현황조사 및 분석 (Present State Investigation and Analysis of Cladding System in High rise Residential Buildings)

  • 석호태;곽현철;송승영
    • 한국주거학회논문집
    • /
    • 제15권5호
    • /
    • pp.43-50
    • /
    • 2004
  • As residential buildings becomes high rise buildings, the new cladding system was needed for structure system, and unpredictable problems were found in it. The aim of this study is to analysis the present state and find improvement of indoor environment in high rise residential building, which used curtain wall system. Then, suggest to create comfortable indoor environment for high rise residential buildings in the process of design.

Structural Design and Construction of Mega Braced Frame System for Tall Buildings

  • Chung, Kwangryang;Yoo, Seounghoon
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.169-175
    • /
    • 2019
  • Recently, two unique high rise buildings have been designed and constructed in Korea. The two buildings, which consist of mega braces and mega columns, are 70-story, 105-story high rise buildings. Through two external structural frame systems, it will be analyzed mechanical and structural characteristic mega column and mega brace system in this report. Particularly, the joint has been studied through the analytical method based on the load transfer mechanism at the point where a mega brace and mega column meets.

해운대 지역의 기후변화에 의한 해일고 변동에 따른 침수피해 평가 (Evaluation of inundation damages based on the fluctuation of inundation height due to climate change in Haeundae Area)

  • 맹다혜;장동호
    • 한국지형학회지
    • /
    • 제18권4호
    • /
    • pp.141-152
    • /
    • 2011
  • 기후변화로 인한 해수면의 상승은 해일고의 변동을 야기하여 연안지역에 많은 사회·경제적 피해를 줄 것으로 예상된다. 해운대 지역의 침수피해를 평가하기 위해 해일고는 관측된 자료를 이용하여 계산하였고, 그 값을 항공 LiDAR 자료를 이용해 생성된 DEM에 적용하여 침수면적과 건물을 파악하였다. 침수면적과 건물은 최저값과 최고값에 5개의 해수면 상승 시나리오로 계산하였다. 최저값인 181cm일 때 침수면적이 7.19ha로 건물 5동이 침수되며, 해수면이 20cm 상승될 때 침수면적이 8.90ha, 침수건물은 8동으로 산출되었다. 30cm 상승시에는 9.98ha로 9동, 40cm 상승시에는 11.11ha로 11동, 50cm 상승시에는 12.41ha로 11동, 60cm 상승시에는 14.18ha로 14동의 건물이 침수된다. 반면, 최고값인 526cm의 경우 32.35ha와 42동의 건물이 침수되는 것으로 나타났다. 해수면이 20cm 상승하면 38.94ha가 침수되어 47여 동이 침수 되고, 30cm 상승시 42.46ha로 52동, 40cm 상승시 45.76ha로 58동, 50cm 상승시 49.51ha로 66동, 이밖에 60cm 상승시 약 52.53ha로 70여동이 침수될 수 있다. 침수 예상 지역 주변에는 해양레저시설과 사회경제적 산업시설, 거주지 등이 입지하고 있어 그 피해가 더욱 커질 것으로 예상된다.

Earthquake performance investigation of R/C residential buildings in Turkey

  • Korkmaz, Kasim Armagan;Demir, Fuat;Yenice, Tugce
    • Computers and Concrete
    • /
    • 제15권6호
    • /
    • pp.921-933
    • /
    • 2015
  • The aim of this study is to determine the earthquake performances of reinforced concrete (R/C) residential buildings in Turkey and to analyze the parameters that affect the performance. The performance of Turkish residential buildings, determined by their levels of damage, directly relates to their structural systems. Damage parameters observed from previous earthquakes define structural parameters selected to be used in the present study. Five different types of frame R/C buildings were modeled. For the analysis, the model buildings vary according to the number of stories, column sizes, and reinforcement and concrete strength parameters. The analyses consider gravity forces and earthquake loads through 1975 and 2007 Turkish design codes. In a total of 720 different R/C buildings were investigated for the analysis to obtain capacity curves. A performance evaluation was employed by considering the Turkish design code (TDC-2007). The current study ignores irregularities such as soft stories or short columns. The study's analysis considers a comparison of the parameters' influence on the structural performance of the model buildings.

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Control of 3-D coupled responses of wind-excited tall buildings by a spatially placed TLCD system

  • Liang, Shuguo;Li, Qiusheng;Qu, Weilian
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.193-207
    • /
    • 2000
  • The possible application of a spatially placed passive tuned liquid column damper system for suppressing coupled lateral-torsional responses of tall buildings is investigated in this paper. The wind loads acting on rectangular tall buildings are analytically expressed as 3-D stochastic model. Meanwhile, the 3-D responses of tall buildings may be coupled due to eccentricities between the stiffness and mass centers of the buildings. In these cases, torsional responses of the buildings are rather larger, and a TLCD system composed of several TLCD located near the sides of the buildings is more effective than the same TLCD placed at the building center in reducing both translational and torsional responses of the buildings. In this paper, extensive analytical and numerical work has been done to present the calculation method and optimize the parameters of such TLCD systems. The numerical examples show that the spatially placed TLCD system can reduce coupled along-wind, across-wind and torsional responses significantly with a fairly small mass ratio.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.