• Title/Summary/Keyword: building modeling

Search Result 1,992, Processing Time 0.027 seconds

A Prototyping Method for Kinect Facade Design: Focusing on the Role of BIM and the Interaction between Digital and Analog Models (프로토타이핑 기법에 의한 키네틱 외피의 설계: 디지털-아날로그 모델의 상호작용과 BIM의 역할을 중심으로)

  • Kim, Do-Young;Kim, Sung-Ah
    • Journal of KIBIM
    • /
    • v.5 no.1
    • /
    • pp.16-24
    • /
    • 2015
  • The kinetic façade system is an interactive building envelope which is adaptive to environmental condition by transforming the behaviour of its components. The design process of kinetic façade system calls for a novel approach. It needs to support designers to adopt technologies from multidisciplinary fields such as physical computing and robotics. In this paper, prototyping method is introduced as a useful technique for implementing kinetic façade systems. In order to incorporate prototyping method into architectural design process, two aspects are investigated in digital design studio: (1) The interactions between digital and analogue environments (2) The role of traditional design tools. Furthermore, the role of BIM is investigated by analyzing two aspects.

Characteristic Variation of 3-D Solenoid Embedded Inductors for Wireless Communication Systems

  • Shin, Dong-Wook;Oh, Chang-Hoon;Kim, Kil-Han;Yun, Il-Gu
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.347-354
    • /
    • 2006
  • The characteristic variation of 3-dimensional (3-D) solenoid-type embedded inductors is investigated. Four different structures of a 3-D inductor are fabricated by using a low-temperature co-fired ceramic (LTCC) process, and their s-parameters are measured between 50 MHz and 5 GHz. The circuit model parameters of each building block are optimized and extracted using the partial element equivalent circuit method and an HSPICE circuit simulator. Based on the model parameters, the characteristics of the test structures such as self-resonant frequency, inductance, and quality (Q) factor are analyzed, and predictive modeling is applied to the structures composed of a combination of the modeled building blocks. In addition, characteristic variations of the 3-D inductors with different structures using extracted building blocks are also investigated. This approach can provide a characteristic estimation of 3-D solenoid embedded inductors for structural variations.

  • PDF

Seismic test of modal control with direct output feedback for building structures

  • Lu, Lyan-Ywan
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.633-656
    • /
    • 2001
  • In this paper, modal control with direct output feedback is formulated in a systematic manner for easy implementation. Its application to the seismic protection of structural systems is verified by a shaking table test, which involves a full-scale building model and an active bracing system as the control device. Two modal control cases, namely, one full-state feedback and one direct output feedback control were tested and compared. The experimental result shows that in mitigating the seismic response of building structures, modal control with direct output feedback can be as effective and efficient as that with full-state feedback control. For practical concerns, the control performance of the proposed method in the presence of sensor noise and stiffness modeling error was also investigated. The numerical result shows that although the control force may be increased, the maximum floor displacements of the controlled structure are very insensitive to sensor noise and modeling error.

Case Study : BIM for Planning, Simulating, and Implementing Complex Site Logistics

  • Kim, JongHoon;Cohen, Fernando Castillo
    • Journal of KIBIM
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 2015
  • This paper presents a case study using Building Information Modeling (BIM) for planning, simulating, and implementing complex site logistics in a headquarter office building construction project in Silver Spring, MD. As part of the project a prefabricated 92ft structural tube steel pedestrian connector bridge was installed between two adjacent buildings in the city of Silver Spring, MD. There were multiple significant challenges to deliver, offload, prepare, and install the connector bridge safely, on time, and with the minimum disturbances to the neighbors. BIM was of the foremost importance to visualize, simulate, analyze, improve, and communicate the site logistics plan from delivery to installation of the connector bridge. As a result of the effort, GC of the project was able to prepare a highly detailed plan, communicate it effectively to all stakeholders, and flawlessly execute the work as planned. This case study would provide a useful reference for contractors who are seeking a better planning method that enables generation of more accurate, implementable, optimized plans for complex site logistics.

Dynamic wind effects : a comparative study of provisions in codes and standards with wind tunnel data

  • Kijewski, T.;Kareem, A.
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.77-109
    • /
    • 1998
  • An evaluation and comparison of seven of the world's major building codes and standards is conducted in this study, with specific discussion of their estimations of the alongwind, acrosswind, and torsional response, where applicable, for a given building. The codes and standards highlighted by this study are those of the United States, Japan, Australia, the United Kingdom, Canada, China and Europe. In addition, the responses predicted by using the measured power spectra of the alongwind, acrosswind and torsional responses for several building shapes tested in a wind tunnel are presented and a comparison between the response predicted by wind tunnel data and that estimated by some of the standards is conducted. This study serves not only as a comparison of the response estimates by international codes and standards, but also introduces a new set of wind tunnel data for validation of wind tunnel-based empirical expressions.

A Study on the Prediction Model of the Total Quantity of the Wall Finishing Structure Member Based on BIM Object Information Using Deep Learning (딥러닝을 활용한 BIM 객체정보기반의 벽마감 구조틀 부재 수량 예측모델에 관한 연구)

  • Park, Do-Yoon;Yun, Seok-Heon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.123-124
    • /
    • 2022
  • The work of modeling and calculating the quantity of detailed parts requires a lot of time and effort. However, The information of BIM Model can be used to predict the amount of uncreated parts with Deep Learning. In this study, Deep Learning was used to predict the total length of the member of frame that was not created. As a result, it was confirmed that the error rate was inside or outside 3%. And predicting other components in this way will increase productivity in Architectural field.

  • PDF

Deep Learning-Based Occupancy Detection and Visualization for Architecture and Urban Data - Towards Augmented Reality and GIS Integration for Improved Safety and Emergency Response Modeling - (건물 내 재실자 감지 및 시각화를 위한 딥러닝 모델 - 증강현실 및 GIS 통합을 통한 안전 및 비상 대응 개선모델 프로토타이핑 -)

  • Shin, Dongyoun
    • Journal of KIBIM
    • /
    • v.13 no.2
    • /
    • pp.29-36
    • /
    • 2023
  • This study explores the potential of utilizing video-based data analysis and machine learning techniques to estimate the number of occupants within a building. The research methodology involves developing a sophisticated counting system capable of detecting and tracking individuals' entry and exit patterns. The proposed method demonstrates promising results in various scenarios; however, it also identifies the need for improvements in camera performance and external environmental conditions, such as lighting. The study emphasizes the significance of incorporating machine learning in architectural and urban planning applications, offering valuable insights for the field. In conclusion, the research calls for further investigation to address the limitations and enhance the system's accuracy, ultimately contributing to the development of a more robust and reliable solution for building occupancy estimation.

A STUDY ON THE CONSTRUCTION OF BIM DATA INTEROPERABILITY FOR ENERGY PERFORMANCE ASSESSMENT BASED ON BIM

  • Jungsik Choi;Hyunjae Yoo;Inhan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.267-273
    • /
    • 2013
  • Early design phase energy modeling is used to provide the design team with first order of magnitude feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest construction of BIM data interoperability for energy performance assessment based on BIM. To archive this purpose, the authors have investigated advantage of BIM-based energy performance assessment through comparison with traditional energy performance assessment and suggested requirement for construction of open BIM environment such as BIM data creation, BIM data software practical use, BIM data application and verification. In addition, the authors have suggested BIM data interoperability and BIM energy property mapping method focused on materials.

  • PDF

A Basic Study on Review the Classification System and the Process of BIM Information for an Automatic Review of Building Code (건축법규 자동검토를 위한 BIM정보의 분류체계 검토 및 프로세스에 관한 기초연구)

  • Lee, Chang-Yoon;Shim, Un-Jun;Ahn, Yong-Sun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.45-52
    • /
    • 2012
  • Recently, BIM is used at several areas actively because of introduction of BIM in the construction industry. In particular, the recent many studies on activation of BIM information sharing is underway and it is the future direction of BIM. Moreover, it should be clearly realized. In the BIM levels of domestic construction phase, Interference Review, calculating volume estimates in part based on the active research is underway. However, still interested in reviewing building codes have relatively little interest. As BIM enabled, The methods of reviewing building codes should be transformed into a automated system by using information of BIM. In overseas, they are already using diverse softwares for reviewing modeling. Thus, For an automatic review of building regulations research is needed. this study is research on the development Domestic building codes as an automatic review process by using BIM. In order to Automatic review of the current building regulations by using BIM, this study analyzes the characteristics of each piece of information.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF