• 제목/요약/키워드: building board

검색결과 312건 처리시간 0.021초

개별건물 에너지소비량 보정기법 개발 및 적용방안 (Development and Application of the Calibration Method of Individual Building Energy Consumption)

  • 김동일;이병호
    • 한국태양에너지학회 논문집
    • /
    • 제40권1호
    • /
    • pp.15-24
    • /
    • 2020
  • Building energy consumption generally depends on living patterns of residents and outdoor air temperature changes. Although outdoor air temperature changes effect on building energy consumption, there is no calibration method for the comparison before and after Green Remodeling or BEMS installation etc., Big data of building energy consumption are collected and managed by 『National Integrated Management System of Building Energy』 in Korea, and they are utilized for the development of a calibration method for individual buildings as shown as the calibration method for small-area building stocks in the previous research. This study aims to develope a calibration method using big data of building energy consumption of individual buildings and outdoor air temperature changes, and to propose application of appropriate calibration methods for individual buildings or small-area building stocks according to the calibration purpose and conditions.

냉·난방도일에 따른 건물에너지 사용량 보정기법 개발 (The Development of the Calibration Method of Building Energy Consumption by HDDm and CDDm)

  • 김동일;이병호
    • 한국태양에너지학회 논문집
    • /
    • 제38권6호
    • /
    • pp.15-26
    • /
    • 2018
  • It is difficult to check the exact building energy consumption reduction such as when green remodeling of buildings, because it is due to outdoor air temperature over the years. And in Korea although Big Data of building energy consumption is collected and managed through "The Information System of the Building Energy and Greenhouse Gases" it is underutilized because of non calibration of outdoor air temperature change. Therefore, this study aims to develope calibration method of building energy consumption by outdoor air temperature according to micro climates, and building use types. As a result of analysis, Regression equations of Building energy consumption and $HDD_m/CDD_m$ are derived and calibration method is developed by Regression coefficient.

안트라사이트를 활용한 산화마그네슘 보드의 실내 공기질 중 라돈가스 농도 저감 평가 (Evaluation of Decreasing Concentration of Radon Gas for Indoor Air Quality with Magnesium Oxide Board using Anthracite)

  • 편수정;임현웅;이상수
    • 한국건축시공학회지
    • /
    • 제18권1호
    • /
    • pp.9-15
    • /
    • 2018
  • 지구상에 존재하는 라돈가스는 바위, 토양, 건축자재 등에서 방출되는 1급 발암물질로 유일한 기체상으로 존재하고 있다. 공기에 비해 무겁고 분자량이 커 하부에 가라앉아 있지만 이동성이 크다. 라돈가스는 특성상 실외에서 대기에 확산되지만 밀폐되고 환기가 어려운 실내공간의 농도는 수천 배까지 증가할 수 있다. 이러한 라돈가스의 위해성을 해결하기 위해 안트라사이트를 활용한 경화체의 라돈가스 저감 특성과 더불어 실내 마감재로 사용할 수 있는 기초 성능평가를 진행하였다. 기존 여과재로 사용된 안트라사이트를 사용하여 경화체를 제작하였으며, 기존 실내에서 사용된 건축자재 중 라돈을 방출하는 석고보드를 대체할 수 있는 시험을 진행하였다. 결합재로는 경소 마그네시아를 사용하였고, 경소마그네시아의 경화를 위해 염화마그네슘을 사용하였다. 흡착재로 사용된 안트라사이트의 치환율은 0, 10, 20, 30, 40, 50 (%)로 총 6수준으로 진행하였으며,W/B는 40%로 고정하였다. 시험항목은 휨파괴 하중, 열전도율, 라돈가스 농도를 진행하였으며, 양생조건은 항온항습 양생(습도 $80{\pm}5%$, 온도 $20{\pm}2^{\circ}C$)으로 진행하였다.

백제 웅진기 이후 대지조성 공법의 연구 (Study on the Construction Method to Develop an Building Site After the Woongjin Period of Baekjae)

  • 조원창
    • 건축역사연구
    • /
    • 제18권5호
    • /
    • pp.25-39
    • /
    • 2009
  • The examples of developing a building site after the Woongjin period are mainly found in temple sites, tile-roofed building sites of unidentified features, and palace remains including the pavilion site with the river in the front(임류각지) inside the Castle of Gongsan, Gongjoo. In case of the Hanseong period, a glimpase of the features has gained in Poongnab mud castle and Mongchon mud castle, but the excavated relics are not yet enough to make some date out of them. After the Woongjin period of Baejae, the earth-ramming development method was used mostly to construct a building site, which is divided into horizontal and slant raising of the ground level. Both are used simultaneously, but there are the significant differences in the way of raising the ground level between them. Particularly, in case of the Wanggoong-ri relics in Iksan, the ground level was raised in a narrow line slantly, which is differentiated from other slant raising of the ground level, and its time of construction also is after that of others. In addition, the board-building development method used for narrow space is usually found in the remains since the seventh century. However, there are not enough the relics of Baekjae to reveal the whole aspect of building site development. It should be studied later through the subsequent excavation and research.

  • PDF

그린리모델링 건물에 대한 에너지소비량 및 보정 사례연구 (A Case Study on Energy Consumption and Calibration of Green Remodeling Buildings)

  • 김동일;이병호
    • 한국태양에너지학회 논문집
    • /
    • 제40권5호
    • /
    • pp.47-58
    • /
    • 2020
  • Ministry of Land, Infrastructure and Transport(MOLIT) has increased reduction rate from 18.1% to 32.7% in Building sector compared to BAU of the national greenhouse gas emission according to the 2030 Greenhouse Gas Reduction Road map Amendment. For this purpose, MOLIT has been activating the green remodeling projects for existing buildings. Considering that 15 year old buildings after completion are 74% (5.25 million buildings) among about 7 million existing building stocks in Korea, reduction of building energy consumption by green remodeling is urgently needed, However, it is a major difficulty of activation for green remodeling projects because there are few case studies on Before and After building energy consumption of actual green remodeling projects. Considering that building energy performance and value increase after green remodeling through previous researches, additional studies of the energy consumption assessment on actual green remodeling projects are essential. Therefore, this study aims to propose results on Before and After building energy consumption of actual green remodeling projects.

고강도콘크리트 폭열 방지공법(PFB 공법)의 현장 적용성 평가에 관한 연구 (Study on Work-Efficiency in feild of PFB(POSCO E&C Fire Board) for High Sterength Concrete Spalling Control)

  • 김우재;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 춘계 학술논문 발표대회
    • /
    • pp.173-176
    • /
    • 2008
  • There are researches are in progress on ensuring the safety of the high impact concrete in cases of fire which is a current rising social problem and this research institute also developed PFB technology, the explosion preventing technology. PFB technology is to apply POSCO E&C Fire Board, a fireproof board, with an adhesive agent on the construction site, and this technology passed 3-hour fireproof test and this technology was proven from a previous research that the temperature of main root is maintained under 200 ℃. Therefore, tests on basic contents to be examined before the actual construction in this research by with a wooden prototype of a full scale to apply PFB technology to actual construction sites and tests are being done on the workability of fireproof board, the adhesive power, the resistance against imprint of wooden nail, the heat conductivity and etc. As the results of those tests, PFB technology was proven to have an excellent workability at a construction site and to be easy for processing and also this technology was proven to have a great the resisting power against imprint of wooden nail, so this research has confirmed that PFB technology has no problem to be applied on a construction site.

  • PDF

Evaluation of the Performance of the PVA Fiber Reinforced Inorganic Binder and Industrial By-products Building Board

  • Park, Jong-Pil;Lee, Sang-Soo;Song, Ha-Young
    • 한국건축시공학회지
    • /
    • 제13권3호
    • /
    • pp.253-262
    • /
    • 2013
  • The test on the mix of PVA fiber of low carbon inorganic composite as a cement substitute found it to be satisfactory in terms of flexibility and stiffness. The result of the evaluation of the properties of low carbon inorganic panel revealed that the absorptivity was low at 8 to 9%, which is lower than the KS value of 25%. Also, the test on non-combustibility and gas toxicity found that these factors satisfied the decision criteria. In the test on heavy metals discharges, Pb, Cd, Cr6+, Hg, and As were not detected. Regarding far-Infrared emissivity and formaldehyde emission, the substitute was found to be harmless to the human body. Therefore, if the issue of shrinkage, which is a disadvantage of inorganic composites, is addressed, it is judged that it is possible to develop a low carbon inorganic composite panel with better performance.

소형챔버법을 이용한 건축자재 중 벽지, 페인트 및 접착제의 VOCs 방출특성 평가 (Assessment of VOCs Emission Characteristics from Building Materials such as Wall Paper, Paints, and Adhesives Using Small Chamber Method)

  • 이석조;장성기;조용성;정경미;정기호
    • 한국대기환경학회지
    • /
    • 제21권2호
    • /
    • pp.191-204
    • /
    • 2005
  • Building and furnishing materials and consumer product are important sources of volatile organic compounds(VOCs) and other aldehydes in the indoor environment. Some available evidence indicates that VOCs can cause adverse health effects to the building occupants and contribute to some of the symptoms of what we call, 'Sick House Syndrome' in Korea. The aims of this study were to evaluate the efficiency of emission system and to investigate comparison of the emission characteristics of different building materials such as wall-papers, paints, and adhesives. The emission of VOCs from building materials were determined in the small chambers defining the temperature, relative humidity, and ventilation rate in this study. VOCs were sampled for 20 minutes using Tenax-TA tubes and analysed by GC-MS with thermal desorption. The stability of conditions for temperature and relative humidity in this small chamber system showed that the fluctuation of temperature was between 25.4$\pm$0.3$^{\circ}C$ and that of relative humidity was 50.2$\pm$0.6$\%$ under the airflow rate of 167 mL/min. The emission tests from building materials resulted in TVOC emission rates of 0.011 $\~$ 3.108 mg/m$^{2}$h after 7 days. The general wall-papers emitted toluene abundantly and the natural wall-papers mainly emitted n-butanol and a minor amount of alkanes compound such as n -tetradecane. The remainder consisted of toluene, m,p -xylene, and styrene. The paints mainly emitted toluene and the adhesives mainly emitted chloroform as well as toluene. As a result, this study is expected to suggest meaningful data for future studies in exposure control through selecting healthy building materials and for the establishment of guidelines for various building materials in Korea.

Adsoprtion Characteristic of Fancy Veneer Overlaid Charcoal Board Composite

  • Kang, Seog-Goo;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권5호
    • /
    • pp.385-390
    • /
    • 2010
  • This study was carried out to manufacture very thin natural elm veneer overlaid charcoal board for enhancing aesthetic value of charcoal board for the indoor application, and to use the advantageous properties of the charcoal as a building material for solving the sick house problem. The thin elm veneer had 26.9% opening ratio. The experiment results showed that the spreading area and the nonvolatile content of adhesive did not affect the gas adsoprtion of fancy veneer overlaid charcoal board. The natural thin elm veneer overlaid charcoal board enhanced not only the aesthetic beauty but also showed the same gas adsorption by the charcoal board.

Evaluation of Physical, Mechanical Properties and Pollutant Emissions of Wood-Magnesium Laminated Board (WML Board) for Interior Finishing Materials

  • PARK, Hee-Jun;JO, Seok-Un
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권1호
    • /
    • pp.86-94
    • /
    • 2020
  • This study serves as basic research for the development of a new wood-based building finishing material that improved the weakness of inorganic materials such as gypsum board and magnesium board widely used as interior finishing materials and brought out the strength of the wood. The results of evaluating the physical and mechanical properties and the environmental effect related to hazardous substance discharge having manufactured a wood-magnesium laminated composite are as follows. The thermal conductivity and thermal resistance of WML board was improved by about 28~109 percent over magnesium board due to the low thermal conductivity of wood. The adhesive strength of WML board showed a similar result to that of plywood as it exceeds 0.7N/㎟, the adhesive standard of wood veneer which is presented by KS F 3101. Bending strength and screw holding strength were more improved by manufacturing WML board than magnesium board. The WML board manufactured in this study satisfied the criteria for emissions of hazardous substances prescribed in the Indoor Air Quality Control Act, and confirmed the possibility of development as a new wood-based composite material that can replace existing inorganic materials.