• Title/Summary/Keyword: building block

Search Result 731, Processing Time 0.038 seconds

A Study on the Right of Light Impact at Adjacent Residential Area by High-rise Residential Commercial Complex Building (상업지역내 고층건물의 인접주거 지역 일조권 영향에 관한 연구)

  • Lee, Sang-Hwa;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.10-18
    • /
    • 2009
  • In order to determine the violation of right of light impact at adjacent residential area by high-rise building, analysis on the right of light for high-rise residential commercial complex building block at Gahngnam-ku, Seoul, Korea was carried out using Google Sketchup Pro. After the analysis th sunshine duration of B apartment decreased from 5 hours 16 minutes 3 hours 48 minutes by I hour 42 minutes after construction. It shows that the total sunshine duration is less than the Seoul City Government Standard which is more than 4 hours a day, or more than 2 consecutive hours. Lowering the heights of apartments by 54m would increase the total sunshine duration which would meet the Seoul City Government Standard by four hours seven minutes. Problems that rna lead to the violation on the right of light in the adjacent area should be discussed in advance and minimized by analyzing the right of light among buildings and structures which are scheduled to be constructed on the site during construction penni! process when high-rise building is proposed.

Structural identification based on substructural technique and using generalized BPFs and GA

  • Ghaffarzadeh, Hosein;Yang, T.Y.;Ajorloo, Yaser Hosseini
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • In this paper, a method is presented to identify the physical and modal parameters of multistory shear building based on substructural technique using block pulse generalized operational matrix and genetic algorithm. The substructure approach divides a complete structure into several substructures in order to significantly reduce the number of unknown parameters for each substructure so that identification processes can be independently conducted on each substructure. Block pulse functions are set of orthogonal functions that have been used in recent years as useful tools in signal characterization. Assuming that the input-outputs data of the system are known, their original BP coefficients can be calculated using numerical method. By using generalized BP operational matrices, substructural dynamic vibration equations can be converted into algebraic equations and based on BP coefficient for each story can be estimated. A cost function can be defined for each story based on original and estimated BP coefficients and physical parameters such as mass, stiffness and damping can be obtained by minimizing cost functions with genetic algorithm. Then, the modal parameters can be computed based on physical parameters. This method does not require that all floors are equipped with sensor simultaneously. To prove the validity, numerical simulation of a shear building excited by two different normally distributed random signals is presented. To evaluate the noise effect, measurement random white noise is added to the noise-free structural responses. The results reveal the proposed method can be beneficial in structural identification with less computational expenses and high accuracy.

Compressive Stress Distribution of Concrete for Performance-Based Design Code (성능 중심 설계기준을 위한 콘크리트 압축응력 분포)

  • Lee, Jae-Hoon;Lim, Kang-Sup;Hwang, Do-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.365-376
    • /
    • 2011
  • The current Concrete Structural Design Code (2007) prescribe the equivalent rectangular stress block of the ACI 318 Building Code as concrete compressive stress distribution for design of concrete structures. The rectangular stress block may be enough for flexural strength calculation, but realistic stress-strain relationship is required for performance verification at selected limit state in performance-based design. Moreover, the ACI rectangular stress block provides non-conservative flexural strength for high strength concrete columns. Therefore a new stress distribution model is required for development of performance-based design code. This paper proposes a concrete compressive stress-strain distribution model for design and performance verification. The proposed model has a parabolic-rectangular shape, which is adopted by Eurocode 2 and Japanese Code (JSCE). It was developed by investigation of experimental test results conducted by the authors and other researchers. The test results cover high strength concrete as well as normal strength concrete. The stress distribution parameters of the proposed models are compared to those of the ACI 318 Building Code, Eurocode 2, Japanese Code (JSCE) and Canadian Code (CSA) as well as the test results.

Development of Flooding and Overflow Simulation Technology for Rainwater Infiltration Storage Block Placement (빗물침투저류블록 설치 최적지 선정을 위한 침수범람 시뮬레이션 기술 개발)

  • Kim, Seongpyo;Ryu, Jungrim;Kim, Hojin;Choi, Heeyong;Lee, Taegyu;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • This study addresses the escalating flood damages prompted by recent climate shifts characterized by extreme weather events and proposes rainwater infiltration blocks as a potential solution. Recognizing the limitations inherent in existing inundation simulation methods, we advocate for the integration of novel functionalities, particularly leveraging drone technology. Our research endeavors encompass experimental assessments of inundation and flooding simulation technologies. These evaluations are conducted within areas where rainwater infiltration storage blocks have been implemented, juxtaposed against existing programs utilizing Digital Elevation Models(DEM) and Digital Surface Models(DSM). Through this comparative analysis and a meticulous scrutiny of the adaptability of inundation and flooding simulation to real-world deployment scenarios, we ascertain the efficacy of the simulation program as a decision-making tool for identifying optimal sites for rainwater infiltration storage block installation.

Fluctuations in Phenolic Content and Antioxidant Capacity of Green Vegetable Juices during Refrigerated Storage

  • Kim, Seong Yeong
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.3
    • /
    • pp.169-175
    • /
    • 2015
  • Shinseoncho and kale were made into green vegetable juices by building block [shinsenocho branch (SB), shinsenocho leaf (SL), kale branch (KB), and kale leaf (KL)]. Fluctuations in their phenolic contents and antioxidant capacities were analyzed during refrigerated storage at $4^{\circ}C$ for 28 days. Total polyphenolic contents of leaf parts showed a decreasing tendency after 4 days (SL) or 7 days (KL), whereas branch parts showed fluctuating values during the entire storage period. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity was rapidly decreased in SB and in SL at 28 days (P<0.001), whereas KL showed a slightly increasing tendency after 14 days. For the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity, SL showed a sharp fall at 28 days (P<0.001), and KL showed a decreasing tendency after 14 days (P<0.001). SB showed a steady decrease during the entire storage period and KB indicated a nearly zero (0.97%) at 28 days. Pearson's coefficients for the correlation between antioxidant capacities measured by the ABTS and DPPH assays, and the total polyphenolic contents were determined. The results showed that the ABTS assay (r=0.934, P<0.001) was more strongly positively correlated with the total phenolic contents than the DPPH assay (r=0.630, P<0.001). In conclusion, when considering all building blocks, green vegetable juices, including kale and shinseoncho may have kept antioxidant capacities for up to 14 days under refrigeration, and the ABTS assay better reflects a positive correlation with the total phenolic contents when compared to the DPPH assay.

Users' preference of the Shared Community Space for the Community Design of Multi-family Housing (아파트 단지내 공동생활공간의 구성선호에 관한 연구)

  • 강혜경;조성희
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2002.11a
    • /
    • pp.235-240
    • /
    • 2002
  • The purpose of this study is to find out users' preference of the shares community space(SCS) for the Community Design. For this, it was analyzed the residents' behavior characteristics of the current multi-family housing and the residents' needs of the SCS. This study focused on seeking out the user-oriented design criteria for the planning of the SCS. The survey was carried out with a structured questionnaire including sketch map from Aug. 13, 2001 to Sept. 14, 2001. The subjects were housewives who's living in Haeuondae of Busan, Korea. Total number of 650 questionnaires were collected and analyzed. Especially 439 cases among them were used for analysis of mental map. The SPSS PC+ was used for the analysis of data. The results of this study are as follows : First, as to the users' behavior for the SCSs, there is a difference in the location of residents' activities by contents of them. And, the range of these locations categorized according to levels of spacial cognition for neighborhoods. Second, as to the analysis of the SCS through a mental maps, it was shown that the residents' pathway and the residents' location are main variables to be considered in the SCS planning. The preferred location of SCS is organized according to the character of the SCS; the one for most residents, is located the surrounding of main enterance or the center of the housing complex, and the one the neighbors living in the same or the near building is located in area of the block of resident buildings. Third, as the results of residents' needs analysis, the SCS has the meaning of community facilities. And there is a difference in the degree of necessity and in the preferred location according to character of the SCS. In detal, for the indoor SCS of a resident building, there is a difference in the preferred location according to the kinds of each SCS. And for the outdoor SCS, it is necessary to divide the planning zone of the SCS into 3 steps(the resident building, the block of resident buildings, and the housing complex).

  • PDF

Response Analysis of Nearby Structures to Excavation-Induced Advancing Ground Movements (지반굴착 유발 진행성 지반변위에 의한 인접구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.153-162
    • /
    • 2009
  • This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions of different soil and structural characteristics. The response of four and two-story block structures, which are subjected to excavation-induced advancing ground movements, are investigated in different soil conditions using numerical analysis. The structures for numerical analysis are modelled to have cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four and two-story block structures are investigated with advancing ground movement phases and compared with the response of structures which are subjected to excavation-induced total ground movement. The response of structures is compared among others in terms of the magnitude and shape of deformations and cracks in structures for different structure and ground conditions. The results of the comparison provide a background for better understandings for controlling and minimizing building damage on nearby structures due to excavation-induced ground movements.

Evaluation of Chloride Attack Resistibility of Heavyweight Concrete Using Copper Slag and Magnetite as Aggregate (동슬래그 및 자철석을 골재로 사용한 중량 콘크리트의 회파블록 적용을 위한 염해저항성 평가)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.483-492
    • /
    • 2017
  • Recently, the coastal area has become the popular place for infrastructure development. To provide a beautiful scenary of costal area to nearby facilities without any hinderance, and also to protect those facilities from the sea water overflow, it is necessary to develop a new type of wave dissipating block, which is a turning wave block. It is noticeable that the top of the turning wave block is flat and thus can provide spaces for various purposes. However, the unit weight of the block decreases due to the presence of pipeline that is installed for turning the direction of the waves. In order to mitigate such problem, a heavyweight concrete needs to be used to increase the resistance against tidal waves. The copper slag and magnetite were used as a source of fine and coarse aggregate, respectively. The 28 day compressive strength of concrete incorporating ordinary and heavyweight aggregate did not show significant differences. It should be noted that the chloride ion penetration resistance was evaluated using NT-BUILD 492 rather than ASTM C 1202 method because concrete incorporating magnetite as a coarse aggregate showed excessive current flow by ASTM C 1202 method. According to the results from NT Build 492 method, which uses the penetration depth of chlorine ions to obtain chloride ion diffusivity, the heavyweight concrete incorporating the copper slag and the magnetite showed the best resistance against the chloride ion penetration. Therefore, it is reasonable to say that heavyweight concrete made with copper slag and magnetite can be used for production of turning wave block.

Construction of UOWHF based on Block Cipher (유니버설 일방향 해쉬 함수에 대한 블록 암호 기반 구성 방법)

  • 이원일
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.101-111
    • /
    • 2004
  • Preneel, Govaerts, and Vandewalle considered the 64 basic ways to construct a collision resistant hash function from a block cipher. They regarded 12 of these 64 schemes as secure, though no proofs or formal claims were given. Black, Rogaway, and Shrimpton presented a more proof-centric look at the schemes from PGV. They proved that, in the black box model of block cipher, 12 of 64 compression functions are CRHFs and 20 of 64 extended hash functions are CRHFs. In this paper, we present 64 schemes of block-cipher-based universal one way hash functions using the main idea of PGV and analyze these schemes in the black box model. We will show that 30 of 64 compression function families UOWHF and 42 of 64 extended hash function families are UOWHF. One of the important results is that, in this black box model, we don't need the mask keys for the security of UOWHF in contrast with the results in general security model of UOWHF. Our results also support the assertion that building an efficient and secure UOWHF is easier than building an efficient and secure CRHF.

A Study on the Physical Properties of Interlocking Block with the Contents of the Recycled Aggregate (순환골재 혼합비율에 따른 인터로킹 블록의 물리적 특성에 관한 연구)

  • Jeon, Chan-Soo;Song, Tae-Hyeob;Yoon, Sang-Hyuck
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.71-78
    • /
    • 2012
  • Recycled aggregates are made from construction wastes, and they have many national and social benefits by saving energy, developing substitute resources, and protecting environment. However, low-quality recycled aggregate with low density and high absorption rate cannot be used for structural concrete aggregate but is used mainly for low added value. Therefore, this study aims to identify the characteristics of the materials of recycled aggregates made after crashing and pulverizing waste concrete. For this, their major physical characteristics of cement content, absolute dry density, absorption rate, etc. were reviewed to make a mix design (draft) for the production of the secondary product and performance evaluation was done on the bending strength, absorption rate, bending strength after freezing and thawing, compressive strength, air-dried gravity, etc. of the test products produced by applying the mix design to compare the results with the quality standards of GR mark. The results of the tests showed that the substitution rate of recycled aggregate increased to 50~90 %, which is of superior quality than the performance standards of GR F 4007. Therefore, it is thought that they can be used for various construction works with certain physical characteristics applicable to the production of secondary concrete products using recycled aggregates.

  • PDF