• Title/Summary/Keyword: building/utilities damage assessment

Search Result 6, Processing Time 0.018 seconds

GIS-based Tunnelling-induced Building/Utility Damage Assessment System-Development and Application (GIS기반의 터널시공에 따른 주변건물/매설관 손상평가 시스템-개발 및 적용)

  • 유충식;전영우;김재훈;박영진;유정훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.233-240
    • /
    • 2003
  • A GIS-based tunnelling risk management system (GIS-TURIMS) has been developed in this study The developed system uses ArcView 8.2 as a basic platform and the built-in interface(VBA) has been used to perform first-order simplified analyses for prediction of tunnelling-induced ground movements and building damage assessment. The main emphasis in this study was to develop a working framework that can be used in the perspective of tunnelling risk management. The developed system is capable of carrying out computationally intensive first-order analyses for ground movement prediction as well as building/utilities damage assessment with fully taking advantage of the GIS technologies. This paper describes the concept and details of the GIS-TURIMS development and implementation.

  • PDF

Development of A GIS-based Tunnelling-induced Building/Utility Damage Assessment System (GIS 기반의 터널굴착시 건물/매설관 손상평가 시스템 개발)

  • 유충식;김재훈;박영진;유정훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.311-318
    • /
    • 2002
  • A GIS-based tunnelling risk management system (GIS-TURIMS) has been developed in this study, The developed system uses ArcView 8.2 as a basic platform and the built-in interface (VBA) has been used to perform first-order simplified analyses for prediction of tunnelling-induced ground movements and building damage assessment. The main emphasis in this study was to develop a working framework that can be used in the perspective of tunnelling risk management. The developed system is capable of carrying out computationally intensive analyses for ground movement prediction as well as building/utilities damage assessment with fully taking advantage of the GIS technologies. This paper describes the concept and details of the GIS-TURIMS development and implementation

  • PDF

Deep Excavation-induced Building and Utility Damage Assessment (도심지 깊은굴착시 주변 건물 및 매설관 손상평가)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.85-95
    • /
    • 2002
  • A substantial portion of the cost of deep excavations in urban environments is devoted to prevent ground movements and their effects on adjacent buildings and utilites. Prediction of ground movements and assessment of the risk of damage to adjacent structures has become an essential part of the planning, design, and construction of a deep excavation project in the urban environments. This paper presents damage assessment techniques for buildings and utilities adjacent deep excavation, which can be readily used in practice.

  • PDF

ASSESSMENT OF TUNNELLING-INDUCED BUILDING DAMAGE

  • Son, Moo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.86-95
    • /
    • 2010
  • Ground movements during tunnelling have the potential for major impact on nearby buildings, utilities and streets. The impacts on buildings are assessed by linking the magnitude of ground loss at the source of ground loss around tunnel to the lateral and vertical displacements on the ground surface, and then to the lateral strain and angular distortion, and resulting damage in the building. To prevent or mitigate the impacts on nearby buildings, it is important to understand the whole mechanism from tunnelling to building damage. This paper discusses tunneling-induced ground movements and their impacts on nearby buildings, including the importance of the soil-structure interactions. In addition, a building damage criterion, which is based on the state of strain, is presented and discussed in detail and the overall damage assessment procedure is provided for the estimation of tunnelling-induced building damage considering the effect of soil-structure interaction.

  • PDF

Development and Implementation of A GIS-based Tunnelling Risk Management System (GIS기반의 터널 시공에 따른 위험도 평가 시스템 개발 및 적용)

  • 유충식;전영우;김재훈;박영진;유정훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 2004
  • A GIS-based tunnelling risk management system(GIS-TURIMS) was developed as a product of this study, The developed system uses ArcView 8.1 as a basic platform and the built-in interface(VBA) has been used to perform first-order simplified analyses for the prediction of tunnelling-induced ground movements and building damage assessment. The main emphasis of this study was to develop a working framework that can be used in the perspective of tunnelling risk management. The developed system is capable of carrying out cornputationally intensive analyses for ground movement prediction as well as buildings/utilities damage assessment taking full advantage of the GIS technologies. This paper describes the concept and details of the GIS-TURIMS development and implementation.

Reliability assessment of EPB tunnel-related settlement

  • Goh, Anthony T.C.;Hefney, A.M.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.57-69
    • /
    • 2010
  • A major consideration in the design of tunnels in urban areas is the prediction of the ground movements and surface settlements associated with the tunneling operations. Excessive ground movements can damage adjacent building and utilities. In this paper, a neural network model is used to predict the maximum surface settlement, based on instrumented results from three separate EPB tunneling projects in Singapore. This paper demonstrates that by coupling the trained neural network model to a spreadsheet optimization technique, the reliability assessment of the settlement serviceability limit state can be carried out using the first-order reliability method. With this method, it is possible to carry out sensitivity studies to examine the effect of the level of uncertainty of each parameter uncertainty on the probability that the serviceability limit state has been exceeded.