• Title/Summary/Keyword: buffing robot

Search Result 6, Processing Time 0.024 seconds

A Study on Development of Off-Line Path Programming for Footwear Buffing Robot

  • Lho, Tae-Jung;Kang, Dong-Joon;Che, Woo-Seung;Kim, Jung-Young;Kim, Min-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1469-1473
    • /
    • 2004
  • We suggest how to program off-line robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot arms. This microscribe system developed consists a 5-axis robot link with a turn table, signal processing circuit, PC and an application software program. It makes a robot path on the shoe's upper through the movement of a microscribe with many joints. To do this, first it reads 5-encoder's pulse values while a robot arm points a shoes' outsole shape from the initial status. This system developed calculates the encoder pulse values for the robot arm's rotation and transmits the angle pulse values to the PC through a circuit. Then, Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from robot joint one. The determinant is obtained with kinematics equation and D-H variable representation. To drive the kinematics equation, we have to set up the standard coordinates first. The many links and the more complicated structure cause the difficult kinematics problem to solve in the geometrical way. Thus, we can solve the robot's kinematics problems efficiently and systematically by Denavit-Hartenberg's representation. Finally, with the coordinate values calculated above, it can draw a buffing gauge-line on the upper. Also, it can program off-line robot path on the shoes' upper. We are subjected to obtaining shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. These data is supposed to be transformed into .dxf file to be used for data of automatic buffing robot. This system developed is simulated by using spline curves coupled with each point from dxf file in Autocad. As a result of applying this system to the buffing robot in the flexible footwear manufacturing system, it can be used effectively to program the path of a real buffing robot.

  • PDF

Development of a New Buffing Robot Manipulator for Shoes (새로운 신발 버핑로봇 매니퓰레이터 개발)

  • Hwang Gyu-Deuk;Cho Sung-Duk;Choi Hyeung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.76-83
    • /
    • 2006
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot manipulator is composed of five degrees of freedom. An analysis on the forward and inverse kinematics was performed. Through the analysis, an analytic solution was derived for the joint angles corresponding to the position and orientation of the tool in the Cartesian coordinates. The hardware system of the robot composed of the control system, input/output interface system, and related electronic system was developed. The communication system was also developed to interact the robot with the related surrounding systems. A graphic user interface(GUI) program including the forward/inverse kinematics, control algorithm, and communication program was developed using visual C++ language.

Development of 5-Axis Microscribe System for Off-Line Buffing Robot Path Programming and Its Application (버핑 로봇의 오프라인 경로 프로그래밍용 5축 마이크로스크라이브 개발 및 응용)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • We propose how to program the off-line buffing robot path along shoes' outsole shape in the footwear buffing process by a 5-axis microscribe system like robot mechanism. The microscribe system we developed consists of a 5-axis robot link with a turn table, a signal processing unit, PC and an application software program. Itmakes a robot path on the shoes' upper in accordance with the movement of a microscribe with many joints. The developed system calculates the encoder pulse values for the microscribe arm's rotation and transmits the angle pulse values to the PC through a processing unit. Denavit-Hartenberg's(D-H) direct kinematics is used to make the global coordinate from microscribe joint one. Problems with the microscribe's kinematics can be solved efficiently and systematically by D-H representation. With the coordinate values calculated by D-H equation, our system can draw a buffing gauge-line on the upper sole. We obtain shoes' outline points, which are 2 outlines coupled with the points and the normal vector based on the points. By applying the system to the buffing robot in a flexible manufacturing system, it can be used effectively to program the path of a real buffing robot.

Development of a new Robot Manipulator for shoes Buffing Operation (새로운 신발버핑 작업용 로봇 매니퓰레이터 개발)

  • Hwang, Gyu-Deuk;Oh, Whan-Ju;Choi, Hyeung-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.743-748
    • /
    • 2004
  • In this paper, an analysis on a new robot manipulator developed for the side buffing of the shoes is presented. The robot is composed of five D.O.F. An Analysis on the forward and inverse kinematics was performed. The hardware system including electric wirings, control system, and related system was developed. Also, The teleoperating communication system was developed to shake with other related system Computer programs to track the bonding line of shoes were developed. An user-friendly graphic program was developed using C $^{++}$ language for the users.

  • PDF

A Study on the Design for the Air Impeller of a Finishing Tool Unit (피니싱 툴 유니트의 에어 임펠러 설계에 관한 연구)

  • Choi, Hyun-Jin;Kang, Ik-Soo;Lee, Seung-Yong;Jang, Eun-Sil;Park, Sun-Myung;Choi, Seong-Dae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.312-319
    • /
    • 2015
  • The grinding and furbishing process as the finishing process for molds include the works such as the grinding, buffing, lapping and polishing among others. A finishing tool unit is applied to this finishing process for the burr, lapping, polishing and others of molds. A finishing tool unit can carry out the flexible machining, depending on the machining allowance for objects to be cut on the basis of the instrumental driving mechanism which enables the up, down, left and right floating, which is applied in link with the dedicated cutters and robot machining systems. This study selected the shape to increase the rotatory force of an impeller when air is discharged during the driving of a finishing tool unit, and reflected it to the impeller designing. In addition, the study analyzed each flow velocity and pressure distribution per air pressurization value and finally analyzed the rotating torque to suggest the optimal conditions in designing impellers.

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.