• 제목/요약/키워드: buffer stabilization

검색결과 48건 처리시간 0.031초

STRATEGIC RESEARCH AT ORNL FOR THE DEVELOPMENT OF ADVANCED COATED CONDUCTORS: PART - I

  • Christen, D.K.;Cantoni, C.;Feenstra, R.;Aytug, T.;Heatherly, L.;Kowalewski, M.M.;List, F.A.;Goyal, A.;Kroeger, D.M.
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.339-339
    • /
    • 2002
  • In the RABiTS approach to coated conductor development, successful (both economic and technological) depends on the refinement and optimization of each of three important components: the metal tape substrate, the buffer layer(s), and the HTS layer. Here we will report on the ORNL approach and progress in each of these areas. - Most applications will require metal tapes with low magnetic hysteresis, mechanical strength, and excellent crystalline texture. Some of these requirements are competing. We report on progress in obtaining a good combination of these characteristics on metal alloys of Ni-Cr and Ni-W. - The deposition of appropriate buffer layers is a crucial step. Recently, base research has shown that the presence of a stable sulfur superstructure present on the metal surface is needed for the nucleation and epitaxial growth of vapor-deposited seed buffer layers such as YSZ, CeO$_2$ and SrTiO$_3$. We report on the details and control of this superstructure for nickel tapes, as well as recent results for Cu and Ni-13%Cr. - Processes for deposition of the HTS coating must economically provide large values of the figure-of-merit for conductors, current x length. At ORNL, we have devoted efforts to a precursor/post-annealing approach to YBCO coatings, for which the deposition and reaction steps are separate. We describe motivation for and progress toward developing this approach. - Finally, we address some issues for the implementation of coated conductors in real applications, including the need for texture control and electrical stabilization of the HTS coating.

  • PDF

단상(單相) 및 2상(相) 혐기성(嫌氣性) 소화(消化)에 의한 주정폐수(酒精廢水) 처리(處理)에 관한 연구(硏究) (A Study on the Treatment of Distillery Wastewater by Single-phase and Two-phase Anaerobic Digestion)

  • 정연규;나승우;박준환
    • 상하수도학회지
    • /
    • 제7권1호
    • /
    • pp.5-12
    • /
    • 1993
  • The objectives of this paper are to present data to illustrate how an advanced digestion process, two-phase digestion, can provide superior performance in terms of waste stabilization efficiency and net energy recovery. As the result, it is possible to separate enrichment cultures of acidogenic and methanogenic organisms in isolated environments by kinetic control involving manipulation of dilution rates. In single-phase digestion process, HRT and COD loading for effective operation were 14.29 days and 2.33kg $COD/m^3$ day, but two-phase digestion may be conducted efficiently at 7 days of HRT and 5.71kg $COD/m^3$ day of loading. Data from this studies showed that the two-phase process is better than single-phase digestion under all test conditions when compared on the bases of gas yield and production rate, reductions of COD and VS, buffer capacity, and unconverted volatile acids in the effluent.

  • PDF

Effect of cholesterol into liposome on the stabilization of incorporated retinol

  • Lee, Jae-Uk;Lee, Soo-Jin;Kang, Joo-Sung;Lee, Kyung-Eun;Kim, Jin-Ju;Lee, Seung-Cheol
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.60-72
    • /
    • 2003
  • To investigate the effect of cholesterol in liposome on the stability of incorporated retinol, the physico-chemical experiments for various amounts of cholesterol-containing liposomes were performed. Liposome with retinol containing cholesterol was prepared as multilamella vesicles(MLVs) by dehydration/rehydration method. The incorporation efficiency of retinol into liposome was maximized as 99.31 % at 50:50 (phosphatidylcholine/cholesterol) at pH 9. The stability of incorporated retinol at low storage temperature was enhanced with increasing cholesterol content than at high storage temperature. For example, incorporated retinol in liposome at glycine buffer(pH 9} was degraded slowly during storage at 4. The degradation of retinol in liposomes was slower at pH 9 than at pH 7. These results supported that cholesterol in liposome increased largely the stability of incorporated retinol.

  • PDF

Electromagnetic Susceptibility Analysis of I/O Buffers Using the Bulk Current Injection Method

  • Kwak, SangKeun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권2호
    • /
    • pp.114-126
    • /
    • 2013
  • In this paper, we present a set of methodologies to model the electromagnetic susceptibility (EMS) testing of I/O buffers for mobile system memory based on the bulk current injection (BCI) method. An efficient equivalent circuit model is developed for the current injection probe, line impedance stabilization network (LISN), printed circuit board (PCB), and package. The simulation results show good correlation with the measurements and thus, the work presented here will enable electromagnetic susceptibility analysis at the integrated circuit (IC) design stage.

실리콘 연마에서 패드 버핑 공정이 연마특성에 미치는 영향 (Effect of Pad Buffing process on Material Removal Characteristics in Silicon Chemical Mechanical Polishing)

  • 박기현;정해도;박재홍;마사하루키노시타
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.303-307
    • /
    • 2007
  • This paper investigated the effect of the pad buffing process on the material removal characteristics and pad stabilization during silicon chemical mechanical polishing. The pads surface were controlled by the buffing process using a buffer made by the sandpaper. The buffing process is based on abrasive machining by using a high speed sandpaper. The controlled pad by the buffing process show less deformation deviation and stable material removal rate during the CMP process. In addition, the controlled pad ensure better uniformity of removal rate than comparative pads. As a result of monitoring, the controlled pad by the buffing process demonstrated constant and stable friction force signals from initial polishing stage. Therefore, the tufting process could control the pad surface to be uniform and improve the performance of the polishing pad.

CTABr 미셀 용액속에서 2-Alkylbenzimidazole 음이온에 의해 추진되는 Isopropyl phenyl-4-nitrophenyl phosphinate(IPNPIN)의 탈인산화반응 (Dephosphorylation of Isopropyl phenyl-4-nitrophenylphosphinate (IPNPIN) onto 2-Alkylbenzimidazolide Anion in CTABr Micellar Solution)

  • 김정배
    • 한국환경과학회지
    • /
    • 제21권5호
    • /
    • pp.585-596
    • /
    • 2012
  • This study is mainly focused on micellar effect of cetyltrimethyl ammonium bromide(CTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of isopropyl-4-nitrophenylphosphinate(IPNPIN) in carbonate buffer(pH 10.7). The reactions of IPNPIN with R-$BI^{\ominus}$ are strongly catalyzed by the micelles of CTABr. Dephosphorylation of IPNPIN is accelerated by $BI^{\ominus}$ ion in $10^{-2}$ M carbonate buffer(pH 10.7) of $4{\times}10^{-3}$ M CTABr solution up to 89 times as compared with the reaction in carbonate buffer by no benzimidazole(BI) solution of $4{\times}10^{-3}$ M CTABr. The value of pseudo first order rate constant($k_{\Psi}$) of the reaction in CTABr solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-$BI^{\ominus}$ in micellar solutions are obviously slower than those by $BI^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-$BI^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, CTABr, strongly catalyzes the reaction of IPNPIN with R-BI and its anion(R-$BI^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}$ M CTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=98.5{\times}10^{-3}\;sec^{-1}$) of the dephosphorylation by a factor ca.25, when compared with reaction($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) in $1{\times}10^{-4}$ M BI solution(without CTABr). And no CTABr solution, in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) of the dephosphorylation by a factor ca.39, when compared with reaction ($k_{\Psi}=1.0{\times}10^{-5}\;sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-$BI^{\ominus}$ in the micellar pseudophase are much smaller than that of $BI^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CTABr.

혐기성 Clostridium thermohydrosulfuricum의 Autolysis 및 Autoplast 형성유도 (Induction of Autolysis and Autoplast Formation of Anaerobic Clostridium thermohydrosulfuricum)

  • 김욱한;박동찬;정기택;이용현
    • 미생물학회지
    • /
    • 제27권4호
    • /
    • pp.357-365
    • /
    • 1989
  • 고온성 Clostridium thermohydrosulfioicum의 autolysis 및 autoplast 형성에 대하여 조사하였다. 초기대수증식기 상태의 세포가 $K^{+}$ $Na^{+}$등의 1가이온을 함유한 buffer나 Tris-HCl buffer 속에서 autolysis 현상을 나타내었다. 이 현상은 1가이온이나 cysteine-HCl, sorbitol, glycerol 등의 화학물질이 존재할 때 강하게 촉진되었으나 $Mg^{2+},Mn^{2+},Ca^{2+},Ni^{2+}$등의 2가 이온에 의해 다소 저해되었으며, 특히 $Fe^{2+},Cu^{2+}$ 등의 2가이온 및 citric acid에 의해서는 강하게 저해되었다. 또한 세포벽합성 저해제인 ampicillin을 함유한 배지에서 생육한 세포는 autolysis가 촉진되었으나 핵산 및 단백질합성 저해제의 경우 autolysis가 저해되었다. Autolysis가 유도되는 최적 pH는 7.5, 최적 온도는 $60^{\circ}C$였다. 한편, autolysis가 일어나는 도중, $Mg^{2+}, Mn^{2+}, Ca^{2+}, Ni^{2+}$등의 2가 이온에 의해 원형질막이 안정화 될 때 lysozyme의 첨가없이 autoplast가 형성되었다. 이 autoplast는 대수증식기 말기 세포에서 형성이 잘 되었으며, autoplast 형성의 최적 pH는 7.5, 최적 온도는 $37^{\circ}C$, 최적 $MgCl^{2}$ 농도는 20mM이었으며, 화학물질로는 0.3M glycerol이 효과적이었다.

  • PDF

Diphenyl-4-nitrophenylphosphinate(DPNPIN)의 탈인산화반응에 미치는 Alkylbenzimidazole의 친핵적 및 Cetylpyridinium chloride(CPyCl) 미셀 촉매효과 (Nucleophilic Effect of Alkylbenzimidazole and Micellar Effect of Cetylpyridinium chloride(CPyCl) on Dephosphorylation of Diphenyl-4-nitrophenylphosphinate(DPNPIN))

  • 김정배;김학윤
    • 한국환경과학회지
    • /
    • 제19권5호
    • /
    • pp.565-575
    • /
    • 2010
  • This study is mainly focused on micellar effect of cetylpyridinium chloride(CPyCl) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). The reactions of DPNPIN with R-BI$^{\ominus}$ are strongly catalyzed by the micelles of CPyCl. Dephosphorylation of DPNPIN is accelerated by BI$^{\ominus}$ ion in $10^{-2}M$ carbonate buffer(pH 10.7) of $4{\times}10^{-3}M$ CPyCl solution up to 100 times as compared with the reaction in carbonate buffer by no BI solution of $4{\times}10^{-3}M$ CPyCl. The value of pseudo first order rate constant($k^m_{BI}$) of the reaction in CPyCl solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-BI$^{\ominus}$ in micellar solutions are obviously slower than those by BI$^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-BI$^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, cetylpyridinium chloride(CPyCl), strongly catalyzes the reaction of diphenyl-4-nitrophenylphosphinate(DPNPIN) with alkylbenzimidazole (R-BI) and its anion(R-BI$^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}M$ CPyCl in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=1.0{\times}10^{-2}sec^{-1}$) of the dephosphorylation by a factor ca.14, when compared with reaction ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) in $1{\times}10^{-4}M$ BI solution(without CPyCl). And no CPyCl solution, in $1{\times}10^{-4}M$ BI solution increase the rate constant ($k_{\Psi}=7.3{\times}10^{-4}sec^{-1}$) of the dephosphorylation by a factor ca.36, when compared with reaction ($k_{\Psi}=2.0{\times}10^{-5}sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-BI$^{\ominus}$ in the micellar pseudophase are much smaller than that of BI$^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CPyCl.

Stabilization of Retinol through Incorporation into Liposomes

  • 이승철;육현균;이동훈;이경은;황용일;Richard D. Ludescher
    • BMB Reports
    • /
    • 제35권4호
    • /
    • pp.358-363
    • /
    • 2002
  • Chemical and photochemical processes during storage and preparation rapidly degrade retinol, the most active form of vitamin A. therefore, the efficacy of incorporation into liposomes in order to modulate the kinetics of retinol degradation was investigated. Retinol was readily incorporated into multilamellar liposomes that were prepared form soybean phosphatidylcholine; the extent of the incorporation was 98.14±0.93% at pH 9.0 at a ratio of 0.01 : 1 (wt:wt) retinol : phospholipid. It was only marginally lower at higher retinol concentrations. The pH of the hydration buffer had a small effect. The incorporation efficiency ranged from 99.25±0.47% at pH 3 to 97.45±1.13% at pH 11. The time course of the retinol degradation in the aqueous solution in liposomes was compared to that of free retinol and free retinol with α-tocopherol under a variety of conditions of pH(3, 7, and 11), temperature(4, 25, 37, and 50℃), and light exposure(dark, visible, and UV). The retinol that was incorporated into the liposomes degraded significantly slower than the free retinol or retinol with α-tocopherol at pH 7 and 11. At pH 3, where the free retinol degrades rapidly, the degradation kinetics were similar in liposomes and the presence of α-tocopherol. At pH 7.0 and 4℃ in the light, for example, free aqueous retinol was completely degraded within 2 days, while only 20% of the retinol in the liposomes were degraded after 8 days. In general, the protective effect of the liposome incorporation was greater at low temperatures, at neutral and high pH, and in the dark. The results suggest that protection is greater in the solid, gel phase than in the fluid liquid crystalline phase lipids. These results indicate that the incorporation into liposomes can extend the shelf-life of retinol under a variety of conditions of temperature, pH, and ambient light conditions.

수용액중 염산카로베린의 용해성 및 안정성 (Solubility and Physicochemical Stability of Caroverine Hydrochloride in Aqueous Solution)

  • 곽혜선;이동수;전인구
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권2호
    • /
    • pp.121-126
    • /
    • 1998
  • The solubility and physicochemical stability of caroverine hydrochloride (CRV), an antispasmodic, in buffered aqueous solutions were studied using a reverse phase high performance liquid chromatography. The solubilty of the drug at pH 2.76-5.40 was similar at the range 31.9-36.2 mg/ml $(34^{circ}C)$, but, at the pH higher than 6.0, markedly decreased. The use of polyethylene glycol 400 as a cosolvent did not increase the solubility at any compositions examined. Moreover. increasing molar concentration of aqueous phosphate buffer from 0 to 0.5 M remarkably decreased the solubility. The degradation of CRY followed the apparent first-order kinetics. The degradation was accelerated with decreasing pH and increasing storage temperature. The half-lives for the degradation of CRY (1.0 mg/ml) at pH 1.28. 4.01 and 5.93 $(45^{\circ}C)$ were 2.8, 31.4 and 124 hr. respectively. The pHs of incubated solutions were to some extent lowered perhaps due to the formation of acidic degradation products. The addition of disodium edetate (0.01%) to the CRY solution (pH 4.95) retarded 2.5 times the degradation rate at $45^{\circ}C$, but the use of sodium bisulfite (0.1%) accelerated 2.9 times the rate. The activation energy for the CRY solution (20 mg/ml. pH 5.4) containing 0.01% EDTA was calculated to be 5.98 kcal/mole. When the solution was stored under nitrogen displacement in ampoule, there was no significant degradation even after 3 months at $40^{\circ}C$, indicating that protection from oxidation by air (oxygen) is essential for the complete stabilization of CRY solution.

  • PDF