• Title/Summary/Keyword: buckwheat flower

Search Result 13, Processing Time 0.017 seconds

Studies on Heterostylism, Fertility, and Embryological Characteristics in Buckwheat. Fagopyrum esculentum (메밀의 이형예현상과 수정력 발생학적 특징에 관한 연구)

  • Man-Sang Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.129-142
    • /
    • 1986
  • Fifty-five local collections of buck wheat, Fagopyrum esculentum, were investigated their ratios of long-styled (LS) and short-styled (SS) flowers, fertility, meiosis of megaspore and microspore mother cell, female and male gametogenesis, and egg apparatus in accordance with the sowing seasons (spring, summer), altitudes (20m, 50-100m, 300m), and parent style types (L, S). Also they were embryologically investigated the fertility, fertilizing phenomenon and proembryogenesis by the legitimate and illegitimate pollination. There were no differences in the ratios of long-styled and short-5tyled flowers along with altitudes, but more irregularness was observed in plain area than that in the mountaineous or coastal area. LS versus SS ratios by sowing seasons were significantly separated into 1 : 1 in the summer sowing (P 0.1), but they were irregularly separated in the spring sowing. The segregating ratios by parent style types showed more number of short-styled flower in the spring sowing, and were statistically seperated into 1 : 1 in the summer sowing (P 0.25), regardless to parent style types. In the artificial legitimate union, the seed setting rates of the summer sowing (59-61%) were much higher than those of the spring sowing (about 30%), but in the artificial illegitimate union the seed setting rates were only fructified about 0.8-1.8% in the spring sowing. The seed setting rates in accordance with flowering stages were larger in turn early, middle, late, in the summer sowing. The grain number and grain weight per plant of short-styled flower were more than those of long-styled one regardless to style types. The 1,000 grain weight of long-styled flower was heavier than that of short-styled one in large grain, but it was lighter than that of short-styled flower in small or medium grain. The percentage of normal female and male gametogenesis in the summer sowing were higher than those in the spring sowing. The ovule was atropous and two polar nuclei were a synkarion before flowering. The pollens germinated at 30 minuts after pollination and the pollen tube grew continually and penetrated into micropyle at 1.5-2 hours and the two male nuclei fertilized with egg nucleus at 3 -5 hours after pollination. Flertilizing times in summer were shorter than in autumn. The fertilized egg was divided in a small apical cell toward the interior of the embryo sac and a large basal cell toward the micropyle cell at 15-24 hours after pollination, and division times in summer were shorter than in autumn. The proembryo began the embryogenesis at 7-8 days and formed itself into the perfect embryo at 15 days after pollination.

  • PDF

STUDIES ON THE DIMORPHISM OF THE PERSICARIA SENTICOSA NAKAI (Persicaria senticosa Nakai의 Dimorphism에 관한 연구)

  • HARN, Chang Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.1
    • /
    • pp.16-25
    • /
    • 1960
  • HARN, Chang Yawl (Chonnam U. Kwangju, Korea): Siudies on the dimorpism of the Perisicaria senticosa Nakai-Kor. jour. Bot. 3(1) 16-25 During his researches regarding the morphological and physiological properties of Polygonecenae, the author has found that the species, Persicaria senticosa, aiso, besides the heterostylous plants of Polygonum family, Fagopyrum esculentum, and Persicaria japonica which was recently verified by the author as dimorphic, shows the typical floral structure of heterostylism, the description of which is not found in taxonomical works. Further research on this species have revealed that this plant, despite pressessing characteristic structural dimorphism, does not exhibit even the slight signs of heterostlylous properties physiologically. This is a deviation from the usual behavior of normal heterostylous plants. What is interesting is the fact that the physiological behavior of this species is quite contrary to that of P. japonica which is considered to be the most highly specialized dimorphic plant. Thus it is assurred that if some species of this family had taken a heterostylic form in its course of development from autogamy to allogamy, P. seoticosa would be the least differentiated type of dimorphic forms among the three heterostylous plants, including buckwheat, of this family. The results obtained in this experiment are summarized as follows: 1) P. senticosa has two forms of flower, one, long style-short stamened; the other, short style-long stamened. Not only conspicuous is this primary difference, but the secondary difference, such as pollen grain size, is noticeable between long and short styled individuals, thus expressing structurally the definite trait of a dimorphic plant. 2) Structural alteration of floral parts towards dimorphism has preceeded far less in comparison with those of the P. japonica and F. esculentum. 3) Elaborate studies on fertility reveal that this species does not show the slightest sign of the physiological characteristics of dimorphic plants. In other words, regardless of the modes of combinations, legitimate and illegitimate, fertilization and fruit setting flourish unimpaired. 4) Growth of pollen tubes apparently parallels the results in the fertility, tubes reaching ovary approximately 30 minutes after pollination both in legitimate and illegitimate combinations. Pollen tube penetration appears to be comparatively rapid. 5) A slight difference in the growth of pollen tube seems to exist between legitimate and illegitimate combinations, legitimate union giving slightly faster tube penetration. 6) In the present experiment it was clarified that P. senticosa, known to possess one form of flower in taxonomy, is in reality dimorphic plant having two of flowers. Although this species is definitely heterostylous in floral structure, physiological evidence and pollen tube behavior show that the differentiation of this plant toward the dimorphism has apparently proceeded slightly except for some parts of floral organ. In ordinary heterostylous plants it is a matter of common occurrence that when illegitimately cmbined, there is poor or no fertility, Contrary to the universal property of heterostylous plants, no difference is observed in the fertility and pollen tube growth between the legitimate and illegitimate combinations in the case of P. senticosa. Compared to the P. japonica and F. esculentum, which are supposed to have undergone high degree of dimorphic differentiation, it is an unavoidable conclusion that P. senticosa has not yet developed as a heterostyle plant except for some of its floral parts. If P. japonica is assumed to be the most differentiated type of hetenostylous plant, thenthe P. senticosa would be regarded as the primitive, retaining still the self-fertile nature so common to the Polygonum genus. In nature, however, this plant has a better chance to be pollinated legitimately owing to the two forms of flowers than to be pollinated illegitimately. The author is indebted to Dong Chul, Kim as well as other members of the Department of Plant Breeding and Genetics of Chonnam National University for their efforts out the laborious experiments during the course of the present studies.

  • PDF

STUDIES ON THE DIMORPHISM AND FERTILITY OF PERSICARIA JAPONICA (MEISSNER) GROSS ET NAKAI (Persicaria Japonica (MISSNER) Gross et Nakai의 이형화와 수정력에 관한 연구)

  • HARN, Chang Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 1960
  • HARN, Chang Yawl : Studies on the dimorphism and Fertility of Persicaria japonica (MEISSNER) Gross et Nakai. Kor Jour. Bot. 3(I) 1-15 1960 Numerous investigations, since the works of DARWIN, have been made regarding the heterostylous plants by JOST (1907), CORRENS (1924), LAIBACK (1924), LEWIS (1943), and many others. Studies on the heterostylous Polygomum, however, were not reported except for the buckwhent, Fagopyrum esculentum, which was investigated by SCHOCH-BODMER (1930), EAST (1934), FROLOVA & Co-Workers (1946), MORRIS (1947, 1951) TATEBE (1949, 1951, 1953), present author (1957), and others. It is because no heterostylous species, besides buckwheat, have been known to exist in the Polygonum family. The author, during his studies on both heterostylism and fertility of Polygonaceae, has found that the species, persicaria japonica (Meissner) Gross et Nakai, is not diecious as has been known in taxonomy, but in reality beterostylous both morphologically and physiologically. It was found that this plant, regarded by taxonomist, as a male plant setting no seed, actually set seed (botanical fruit) when legitimate combination was made. Since his brief report on the dimorphic phenomens of this plant in 1956, the author's further research on the manner of fertilization has revealed that this species is a peculiar type whose dimorphism has undergone extreme specialization structurally and physiologically, the short-styled individual behaving in nature as a male plant and the long-styled individual, as female, whereas in controllled pollination the plant shows highly differentiated typical dimorphism. When compared with the other dimorphous species of this family, F. esculentum and P. sentiosa. it has been clarified that these three species differ in the degree of differentiation of their dimorphism morphologically and physiologically. That is, P. japonica has developed such a high specialization as to mislead the taxonomists, while P. senticosa shows almost no noticeable difference between long- and shortstyled individuals retaining most of the inherent physiological character cmmon to the genus except for the fact that it has two forms of flowers. F. esculentum appears to have taken the intermediate position in every respect. The result obtained in the present experiment are summarized as follows: 1) P. japonica has two kinds of individuals, one long style-short stamened; the other, short style-long stamened. The floral structure of this plants shows typical characteristics of dimorphic heterostylism. The differentiation between the two forms of flower has proceeded so highly both in primary and secondary difference of flower structure that this may be regarded as the most specialized form of dimorphism. 2) The differences of floral structure between the long and short styled individuals are remarkable compared with the other dimorphic species of the family. 3) The stamens of long styled plants show the sign of deteriolation whereas those of the short styled flower are well-developed. 4) When legitimate combinations are made, both L- and S-styled individuals are fertilized well and set seed (fruit), while in the illegitimate combination no fertilization and seed setting occur. Physiologically this species exhibits the typical behavior of dimorphic plants. 5) The self-fertile character, so common in other species of the other non-heterostyle Polygonum family, has disappeared completely. 6) Under natural conditions, no or few seed setting is observed in short styled individuals that behave as if they were male plants. 7) In hand pollination, the combination of both $L{\times}S$ and $S{\times}L$ alike yield relatively good fertility and seed-formation, the behavior of short styled individuals in artificial pollination differing remarkably from that in nature. 8) Under controlled pollination, $L{\times}S$ combination sets far more seed than in the combination of $S{\times}L$. In the S-styled individuals, the fertilized flower has the tendency of its seed more readily falling off in every stage of seed development than in the L-styled individuals. 9) The behaviors of pollen tubes just parallels the results of fertility test. That is, in the illegitimate combination, L-selfed, $L{\times}L$, S-selfed, and $S{\times}S$, the growth of pollen tubes is checked in the style, while in legitimately combined $L{\times}S$ and $S{\times}L$, the pollen tubes grow well reaching the ovaries within 40-50 minutes after pollination. The response of short styled individuals, known as male plant among taxonomists, is identical, as far as behavior fo pollen tube growth and fertilization are concerned, to that of long styled individuals, the so-called female plant. 10) The pollen grains from the short-styled plants are complete and fertile, whereas 70% of those of L-styled are found to be abortive, i.e., empty contents. 11) The remaining 30% of pollen of L-plant shows varied degree of stainability when stained with iron-aceto-carmine......mostly light red, while the pollen grains of S-style individuals are dark brown indicating complete fertility and viability. 12) The abundance of sterile pollen in L-styled and the nature of seed-dropping which occurs in S-styled individuals appear to be the main causes why the short styled individuals bear no seed in nature. Under controlled legitimate union, $S{\times}L$, the careful and elaborate pollination would give the S-styoled flowers the opportunities to receive the fertile pollens, though few in number, from L-styled plant, thus enabling S-plant to bear seed. 13) This species is not dioecious as is regarded by taxonomists, but typical dimorphic plant which has so highly specialized in floral structures and funcitons that the long-styled plant behaves just like a female individual; and the short-styled, like a male.

  • PDF