• 제목/요약/키워드: buckling modes

검색결과 214건 처리시간 0.035초

Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.333-348
    • /
    • 2018
  • An analytical method is developed for analysing the contact buckling response of infinitely long, thin corrugated plates and flat plates restrained by a Winkler tensionless foundation and subjected to linearly varying in-plane loadings, where the corrugated plates are modelled as orthotropic plates and the flat plates are modelled as isotropic plates. The critical step in the presented method is the explicit expression for the lateral buckling mode function, which is derived through using the energy method. Simply supported and clamped edges conditions on the unloaded edges are considered in this study. The acquired lateral deflection function is applied to the governing buckling equations to eliminate the lateral variable. Considering the boundary conditions and continuity conditions at the border line between the contact and non-contact zones, the buckling coefficients and the corresponding buckling modes are found. The analytical solution to the buckling coefficients is also expressed through a fitted approximate formula in terms of foundation stiffness, which is verified through previous studies and finite element (FE) method.

시스템좌굴 해석법을 이용한 라멘형가교 주요부재의 좌굴설계에 관한 사례 연구 (Case Study for Buckling Design of Temporary Bridges using System Buckling Analysis)

  • 경용수;소병훈;방진환;김문영
    • 한국강구조학회 논문집
    • /
    • 제19권1호
    • /
    • pp.87-98
    • /
    • 2007
  • 일반적으로 가교량은 주형와 강재교각이 강결 연결된 강재 라멘구조를 형성하고 있다. 강재 라멘구조의 경우, 작용하는 하중에 의해 축력 및 휨을 받는 부재/축력 및 휨을 동시에 받는 부재가 발생한다. 본 연구에서는 이러한 부재에 대해서 시스템 좌굴해석을 통하여 가교량 주요부재의 유효길이를 산정하고 이를 이용하여 안정성 해석을 수행한다. 이를 위하여 실제 설계/시공될 수 있는 가교의 6가지 유형을 선택하고, 고정하중, 온도하중 그리고, 활하중조합에 대한 3차원 좌굴설계를 실시한다. 결과적으로 6가지 가교에 대한 사례연구를 통하여 주형 및 교각부의 유효길이 산정법, 3차원 좌굴모드에 대한 고찰, 그리고 2차해석의 효용을 조사한다.

Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT

  • Abdelrahman, Wael G.
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.83-90
    • /
    • 2020
  • Several classical and higher order plate theories were used to study the buckling of functionally graded material (FGM) plates. In the great majority of research, a power function is used to represent metal and ceramic material transverse distribution (P-FGM). Therefore, the effect of having other transverse variation of material properties on the buckling behavior of thick rectangular FGM plates was not properly addressed. In the present work, this effect is investigated using the Third order Shear Deformable Theory (TSDT) for the case of simply supported FGM plate. Both a sigmoid function and an exponential functions are used to represent the transverse gradual property variation. The plate governing equations are combined with a Navier type expanded solution of the unknown displacements to derive the buckling equation in terms of the pre-buckling in-plane loads. Finally, the critical in-plane load is calculated for the different buckling modes. The model is verified by a comparison of the calculated buckling loads with available published results of Al-SiC P-FGM plates. The conducted parametric study shows that manufacturing FGM plates with sigmoid variation of properties in the thickness direction increases the buckling load considerably. This improvement is found to be more significant for the case of thick plates than that of thin plates. Results also show that this stiffening-like effect of the sigmoid function profile is more evident for cases where the in-plane loads are applied along the shorter edge of the plate.

An Approximate Method for the Buckling Analysis of a Composite Lattice Rectangular Plate

  • Kim, Yongha;Kim, Pyunghwa;Kim, Hiyeop;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.450-466
    • /
    • 2017
  • This paper defines the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties and mode shape function of a composite lattice rectangular plate, which is assumed to be a Kirchhoff-Love plate. It subsequently presents an approximate method of conducting a buckling analysis of the composite lattice rectangular plate with various boundary conditions under uniform compression using the Ritz method. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, this paper performs a parametric analysis to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice rectangular plate based on the present method. The results allow a database to be obtained on the buckling characteristics of composite lattice rectangular plates. Consequently, it is concluded that the present method which facilitates the calculation of the critical load and buckling mode shape according to the design parameters as well as the parametric analysis are very useful not only because of their structural design but also because of the buckling analysis of composite lattice structures.

원통쉘의 좌굴 거동 및 전단 변위에 따른 동적 특성 변화 (Buckling Behavior and Variation of Dynamic Characteristics under Shear Displacement of Cylindrical Shell)

  • 이창훈;우호길;구경회;이재한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.756-759
    • /
    • 2001
  • The purpose of this paper is to investigate the buckling and dynamic characteristics for the cylindrical shell under shear loading. To do this, a vibration model tests and analyses and static buckling analyses were performed for the reduced scale model of nuclear reactor vessel. From the results of vibration modal analysis with the pre-shear displacement loads, it is known that the beam vibration mode is not affected by the shear displacement, however shell vibration modes are significantly affected by it. As the pre-shear displacement increases to the critical buckling displacement, the 1st shell vibration frequency in greatly reduces and approaches to zero value.

  • PDF

Strength buckling predictions of cold-formed steel built-up columns

  • Megnounif, A.;Djafour, M.;Belarbi, A.;Kerdal, D.
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.443-460
    • /
    • 2008
  • The aim of this paper is to propose a design procedure for predicting the buckling strength of built-up, cold-formed steel columns based on the two well known methods; the effective width method and the Direct Strength Method. Several design approaches, based on different elastic buckling solutions, were considered in this investigation. Traditional hand methods, without interaction effects between the different modes, and a new numerical spline finite strip method were used to predict the buckling stresses. All of the proposed methods were compared with experimental data on plain and lipped, built-up columns. Results have shown that the effective width approaches are more accurate than the Direct Strength Method. However, both methods can be investigated using more experimental data to assess a practical design method for built-up columns.

회전자유도를 갖는 평면쉘요소에 의한 박판구조물의 선형 좌굴해석 (Linear Buckling Analysis of Thin-walled Structures by Flat Shell Elements with Drilling D.O.F.)

  • 최창근;송명관
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.258-265
    • /
    • 1998
  • Application of the flat shell element with drilling D.O.F to linear buckling analysis of thin-walled structures is presented in this paper. The shell element has been developed basically by combining a membrane element with drilling D.O.F. and Mindlin plate bending element. Thus, the shell element possesses six degrees-of-freedom per node which, in addition to improvement of the element behavior, permits an easy connection to other six degrees-of-freedom per node elements(CLS, Choi and Lee, 1995). Accordingly, structures like folded plate and stiffened shell structure, for which it is hard to find the analytical solutions, can be analyzed using these developed flat shell elements. In this paper, linear buckling analysis of thin-walled structures like folded plate structures using the shell elements(CLS) with drilling D.O.F. to be formulated and then fulfilled. Subsequently, buckling modes and the critical loads can be output. Finally. finite element solutions for linear buckling analysis of folded plate structures are compared with available analytic solutions and other researcher's results.

  • PDF

API-X80 라인파이프의 좌굴 안정성 평가 (Buckling Behavior of API-X80 Linepipe)

  • 조우연;안성수;윤태양;유장용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.211-216
    • /
    • 2007
  • The objective of this paper is to present the results of an experimental and a finite-element investigation into the behavior of X80 grade pipes subjected to bending. For the pipe specimens comprising the test series, different D/t is applied to be representative of those that can be expected in the field. Results from the numerical models are checked against the observations in the testing program and the ability of numerical solutions to predict pipe moment capacity. curvatures. and buckling modes is established. A finite-element model was developed using the finite-element simulator to predict the local buckling behavior of pipes. The comparison between the numerical and the experimental results demonstrates the ability of the analytical model to predict the local buckling behavior of pipes when deformed well into the post-yield range.

  • PDF

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.

Inelastic lateral-distortional buckling of continuously restrained rolled I-beams

  • Lee, Dong-Sik;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.297-314
    • /
    • 2002
  • An energy method of analysis is presented which can be used to study the inelastic lateral-distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of continuously restained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and incorporates both the so-called 'polynomial' and 'simplified' models of residual stresses. The method is validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the provisions of the Australian AS4100 steel standard are unconservative.