• Title/Summary/Keyword: bubbles-liquid flow

Search Result 78, Processing Time 0.024 seconds

Analysis of Gas Injection System based on Flow Visualization (가시화를 통한 Gas Injection System에 관한 연구)

  • Seo Dong-pyo;Oh Yool-kwon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.85-88
    • /
    • 2002
  • In order to visually analyze the flow characteristics, gas was injected into the liquid bath through nozzle installed at the center of bottom of the bath. When gas was injected into the liquid bath, several flow patterns were observed bubble-liquid plumb, the spout flow that occurred at the free surface, liquid circulation flow by bubble's behavior, etc. Various bubbles, from small bubbles to Taylor bubbles, consisted of the bubble-liquid plumb. In the pure liquid region, the large and small several vortices were formed and irregularly circulated. These irregular repetition and circulation play a important role of mixing in the bath. The vortices were developed in the upper and the side wall regions and the movement of flow in the low region was very small. It is known as 'dead zone'.

  • PDF

THEORETICAL STUDY OF MOTION OF SMALL SPHERICAL AIR BUBBLES IN A UNIFORM SHEAR FLOW OF WATER

  • MEHDI, SYED MURTUZA;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.126-134
    • /
    • 2015
  • A simple Couette flow velocity profile with an appropriate correlation for the free terminal rise velocity of a single bubble in a quiescent liquid can produce reliable results for the trajectories of small spherical air bubbles in a low-viscosity liquid (water) provided the liquid remains under uniform shear flow. Comparison of the model adopted in this paper with published results has been accomplished. Based on this study it has also been found that the lift coefficient in water is higher than its typical value in a high-viscosity liquid and therefore a modified correlation for the lift coefficient in a uniform shear flow of water within the regime of the $E\ddot{o}tv\ddot{o}s$ number $0.305{\leq}Eo{\leq}1.22$ is also presented.

A Study on Bubbles Flow in the Gas-injected Cylindrical Bath (기체가 주입된 원통형 용기내에서 기포유동에 관한 연구)

  • Seo Dong-Pyo;Park Keun-Uk;Oh Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Study on Flow Interaction between Bubble and Phase Change Material according to Injection Location (주입 위치에 따른 기포와 상변화물질의 유동 상호 작용에 관한 연구)

  • Min Hyeok Kim;Yun Young Ji;Dong Kee Sohn;Han Seo Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.75-84
    • /
    • 2023
  • In this study, we conducted analysis of bubble dynamics and flow of liquid phase change material(PCM) using shadowgraphy and particle image velocimetry(PIV). Characteristics of internal flow varied depending on locations of injection when solid PCM was liquefied from heated vertical wall. When bubbles rose immediately, they exhibited elliptical shape and zigzag trajectory. In contrast, when bubbles rose after merging at the bottom of solid PCM, with equivalent diameter for the inter-wall distance of 0.64 or greater, they showed a jellyfish shape and strong rocking behavior. It was observed by the PIV that the small ellipse bubbles made most strong flow inside the liquid PCM. Furthermore, the flow velocity was highest in the case of front injection, as the directions of temperature gradients and bubble-driven flow were aligned. The results underscore the significant influence of injection location on various characteristics, including bubble size, shape, rising path of bubbles, and internal flow.

Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection (수직상향 기체 주입에 따른 기포 및 액상의 유동분석)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

An Experimental Study on the Characteristics of Bubbles in Air-Water Model (Air-Water 모델에서 기포특성에 관한 실험적 연구)

  • 오율권;서동표
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2003
  • The structural development of air-water bubble plumes has been measured under different condition on air flow rate in a cylindrical bath. The time-averaged structure of plumes has been measured with an oscilloscope and an electro-conductivity probe. The temperature of bubbles was also obtained by a thermal-infrared camera. Gas volume fraction and bubble frequency were high since bubbles concentrated on the nozzle. In general, their axial and radial values tended to decrease with increasing distance. Bubble temperature reached water temperature within a short time. The present study showed that thermal equilibrium between bubbles and water was completed before bubbles flow became stable.

Effect of a Tube Diameter on Single Bubble Condensation in Subcooled Flow (튜브 직경에 따른 과냉각 유동 내 단일 기포 응축의 영향)

  • Sun Youb Lee;Cong-Tu Ha;Jae Hwa Le
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Bubble condensation, which involves the interaction of bubbles within the subcooled liquid flow, plays an important role in the effective control of thermal devices. In this study, numerical simulations are performed using a VOF (Volume of Fluid) model to investigate the effect of tube diameter on bubble condensation. As the tube diameter decreases, condensation bubbles persist for a long time and disappear at a higher position. It is observed that for small tube diameters, the heat transfer coefficients of condensation bubbles, which is a quantitative parameter of condensation rate, are smaller than those for large tube diameters. When the tube diameter is small, the subcooled liquid around the condensing bubble is locally participated in the condensation of the bubble to fill the reduced volume of the bubble due to the generation of a backflow in the narrow space between the bubble and the wall, so that the heat transfer coefficient decreases.

An Experimental Study of The Effects of The Mixing Vane on Air-water Mixed Flow

  • Kim, Soo-Hyung;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.331-336
    • /
    • 1996
  • The effects of a mixing vane on air-water mixed flow have been experimentally studied in this work, to investigate the basic mechanisms that the mixing vane affects critical heat flux (CHF). Experiment was performed for various flow rates focusing on bubbly flow and annular flow patterns. Acrylic tube (1.7m long, 11 mm I.D.) and the split vane type mixing vane were used, and ring-type conductance probes were used to measure the liquid film thickness in annular flow. Experimental results show that, (a) bubbly-to slug flow transition and churn-to-annular flow transition occur respectively near the mixing vane compared to the tests without mixing vane, (b) in bubbly flow region, the mixing vane breaks the bubbles into smaller ones and forwards bubbles to the center region of the tube by the centrifugal force, (c) the liquid film thickness in annular flow is decreased near the mixing vane for mass fluxes.

  • PDF

An Experimental Study on the Flow Characteristics in Highly Viscous Liquid by Multi-Nozzle Bubbling (고점성 액체 내부에서의 다중 노즐 버블링에 의한 유동특성에 대한 실험적 연구)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.195-201
    • /
    • 2007
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filed with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}s\;at\;25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k{\times}2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20nm from the bottom of the mixer.