• Title/Summary/Keyword: brown dwarfs

Search Result 19, Processing Time 0.052 seconds

NEW INSIGHT ON BROWN DWARF ATMOSPHERES REVEALED BY AKARI

  • Sorahana, S.;Yamamura, I.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.183-184
    • /
    • 2012
  • We present the latest results from the Mission Program NIRLT, the NIR spectroscopic observations of brown dwarfs using the IRC on board AKARI. The near-infrared spectra in the wavelength range between 2.5 and $5.0{\mu}m$ is especially important to study the brown dwarf atmospheres because of the presence of non-blended bands of major molecules, including $CH_4$ at $3.3{\mu}m$, $CO_2$ at $4.2{\mu}m$, CO at $4.6{\mu}m$ and $H_2O$ around $2.7{\mu}m$. Our observations were carried out in the grism-mode resulting in a spectral resolution of ~ 120. In total, 27 sources were observed and 18 good spectra were obtained. We investigate the behavior of three molecular absorption bands, CO, $CH_4$ and $CO_2$, in brown dwarf spectra relative to their spectral types. We find that the $CH_4$ band appears in the spectra of dwarfs later than L5 and CO band is seen in the spectra of all spectral types. $CO_2$ is detected in the spectra of late-L and T type dwarfs.

A SIGNATURE OF CHROMOSPHERIC ACTIVITY IN BROWN DWARFS: A RECENT RESULT FROM NIRLT MISSION PROGRAM

  • Sorahana, Satoko;Suzuki, Takeru K.;Yamamura, Issei
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.131-133
    • /
    • 2017
  • We present the latest results from the Mission Program NIRLT (PI: I.Yamamura), the near-infrared spectroscopy of brown dwarfs using the AKARI/IRC grism mode with the spectral resolution of ~ 120. The near-infrared spectra in the wavelength range between 2.5 and $5.0{\mu}m$ are especially important to study the brown dwarf atmospheres because of the presence of major molecular bands, including $CH_4$ at $3.3{\mu}m$, $CO_2$ at $4.2{\mu}m$, CO at $4.6{\mu}m$, and $H_2O$ around $2.7{\mu}m$. We observed 27 sources, and obtained 16 good spectra. Our model fitting reveals deviations between theoretical model and observed spectra in this wavelength range, which may be attributed to the physical condition of the upper atmosphere. The deviations indicate additional heating, which we hypothesize to be due to chromospheric activity. We test this effect by modifying the brown dwarf atmosphere model to artificially increase the temperature of the upper atmosphere, and compare the revised model with observed spectra of early- to mid-L type objects with $H{\alpha}$ emission. We find that the chemical structure of the atmosphere changes dramatically, and the heating model spectra of early-type brown dwarfs can be considerably improved to match the observed spectra. Our result suggests that chromospheric activity is essential to understand early-type brown dwarf atmospheres.

From Brown Dwarfs to Gamma Ray Bursts at High Redshift: Overview of Current CEOU Activities

  • Im, Myung-Shin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • We present the current research activities of the Center for the Exploration of the Origin of the Universe, a center established at Seoul National University with the Creative Research Initiative program. Our activities focus on observational studies of distant objects such as gamma-ray bursts, quasars, and proto-cluster of galaxies, but we also carry out other observational and theoretical studies in related topics. We also developed a new instrument, Camera for Quasars at Early Universe (CQUEAN) in collaboration with Kyunghee University group, and have secured observing facilities such as UKIRT and McDonald 2.1m observatory. Our research highlights include results such as the discovery of high redshift quasars and gamma ray bursts, the discovery of tidal disruption event at z=0.38 and peculiar gamma ray burst events, analysis of proto-clusters of galaxies, the discovery of brown dwarfs, and development of CQUEAN and its usage at the McDonald observatory.

  • PDF

Search for exoplanet using by BOES

  • Lee, Byeong-Cheol;Han, Inwoo;Kim, Kang-Min;Park, Myeong-Gu;Jeong, Gwanghui;Mkrtichian, David;Omiya, Masashi;Hatzes, Artie
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.59.3-59.3
    • /
    • 2016
  • We report the results of search for exoplanets by a precise radial velocity (RV) survey by using the high-resolution spectroscopy of the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). Since 2003, we have conducted a precise RV survey for ~500 stars, including 55 K giants, ~200 G giants, 10 M giants, 40 K dwarfs, and ~200 northern circumpolar stars. We present the detection of around 20 new exoplanets and brown dwarfs.

  • PDF

Identication of L328-IRS as a Proto-Brown Dwarf

  • Lee, Chang Won;Kim, Mi-Ryang;Kim, Gwanjeong;Siato, Masao;Myers, Philip C.;Kurono, Yasutaka
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.65.1-65.1
    • /
    • 2013
  • Our understanding of how brown dwarfs form is limited by observational evidence. We report identification of a L328-IRS as a proto-brown dwarf embedded in an isolated dense molecular core. This source exhibits typical properties of a protostar, however, its luminosity (~0.05 $L{\odot}$) is far below than expected from the least massive protostar by the standard star formation theory. The most likely mass accretion rate (~2.4 10-7 $M{\odot}$ yr-1) inferred from its small bipolar outflow is an order of magnitude less than the canonical value for a protostar. The mass available in its envelope is less than 0.1 $M{\odot}$. These points suggest that L328-IRS will accrete the mass of a brown dwarf, but not that of a star. L328 is found to be fairly well isolated from other nearby clouds and seems to be forming three sub-cores simultaneously through a gravitational fragmentation process. Altogether with these, our direct detection of inward motions in L328 which harbors this proto-brown dwarf clearly supports the idea that a brown dwarf forms like a normal star.

  • PDF

MOLECULAR OUTFLOWS AND THE FORMATION PROCESS OF VERY LOW-MASS OBJECTS

  • PHAN-BAO, NGOC;DANG-DUC, CUONG;LEE, CHIN-FEI;HO, PAUL T.P.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.83-86
    • /
    • 2015
  • We present observational results characterizing molecular outflows from very low-mass objects in ${\rho}$ Ophiuchi and Taurus. Our results provide us with important implications that clarify the formation process of very low-mass objects.

THE LUMINOSITY FUNCTION AND INITIAL MASS FUNCTION FOR THE PLEIADES CLUSTER

  • LEE SEE WOO;SUNG HWANKYUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.45-59
    • /
    • 1995
  • In the best observed Pleiades cluster, the luminosity function(LF) and mass function(MF) for main sequence(MS) stars extended to $Mv{\approx}15.5(V{\approx}21)$ are very similar to the initial luminosity function(ILF) and initial mass function(IMF) for field stars in the solar neighborhood showing a bump at log $m{\simeq}-0.05$ and a dip at log $m{\simeq}-0.12$. This dip is equivalent to the Wielen dip appearing in the LF for the field stars. The occurence of these bump and dip is independent of adopted mass-luminosity relation(MLR) . and their characteristics could be explained by a time-dependent bimodal IMF. The model with this IMF gives a total cluster mass of $\~700M_\bigodot,\;\~25$ brown dwarfs and $\~3$ white dwarfs if the upper mass limit of progenitor of white dwarf is greater than $4.5M_\bigodot$. The cluster age on the basis of LF for brightest stars is given by $\~8\times10^7yr$ and all stars in the cluster lie along the single age sequence in the C-M diagram without showing a large dispersion from the sequence.

  • PDF

FIR VIEW OF DISKS OF WEAK-LINE T TAURI STARS

  • Takita, Satoshi;Doi, Yasuo;Arimatsu, Ko;Ootsubo, Takafumi;AKARI Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.127-129
    • /
    • 2017
  • We have observed ~60 Weak-line T Tauri stars (WTTSs) toward the Chamaeleon star forming region using the AKARI Far-Infrared Surveyor (FIS) All-Sky maps. We could not detect any significant emission from each source even at the most sensitive WIDE-S band. Then, we have performed stacking analysis of these WTTSs using the WIDE-S band images to improve the sensitivity. However, we could not detect any significant emission in the resultant image with a noise level of $0.05MJy\;sr^{-1}$, or 3 mJy for a point source. The three-sigma upper limit of 9 mJy leads to the disk dust mass of $0.01M_{\oplus}$. This result suggests that the disks around Chamaeleon WTTSs are already evolved to debris disks.

GRAVITATIONAL MICROLENSING (미시중력렌즈)

  • Park Myeong-Gu;Han Cheongho
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.81-97
    • /
    • 2001
  • Since the first proposal by Paczynski, great efforts to detect Galactic dark matter by detecting light variations of stars located in the Magellanic Clouds and Galactic bulge caused by gravitational microlensing have been and are being carried out and more than 1,000 events have been successfully detected. In this paper, we review the progress in the theoretical and experimental progresses in microlensing. We begin with basics of microlensing and summarize the results obtained from the last 8 year observations along with the implications of the results. We also discuss the usefulness of microlensing in other fields of astronomy such as the stellar atmosphere, Galactic binary systems, and extra-solar planets. We finally discuss the problems of the current experiments and the new types of observations that can overcome these problems.

  • PDF

BLACK HOLES IN GALACTIC NUCLEI: ALTERNATIVES AND IMPLICATIONS

  • Lee, Hyung-Mok
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • Recent spectroscopic observations indicate concentration of dark masses in the nuclei of nearby galaxies. This has been usually interpreted as the presence of massive black holes in these nuclei. Alternative explanations such as the dark cluster composed of low mass stars (brown dwarfs) or dark stellar remnants are possible provided that these systems can be stably maintained for the age of galaxies. For the case of low mass star cluster, mass of individual stars can grow to that of conventional stars in collision time scale. The requirement of collision time scale being shorter than the Hubble time gives the minimum cluster size. For typical conditions of M31 or M32, the half-mass radii of dark clusters can be as small as 0.1 arcsecond. For the case of clusters composed of stellar remnants, core-collapse and post-collapse expansion are required to take place in longer than Hubble time. Simple estimates reveal that the size of these clusters also can be small enough that no contradiction with observational data exists for the clusters made of white dwarfs or neutron stars. We then considered the possible outcomes of interactions between the black hole and the surrounding stellar system. Under typical conditions of M31 or M32, tidal disruption will occur every $10^3$ to $10^4$ years. We present a simple scenario for the evolution of stellar debris based on basic principles. While the accretion of stellar material could produce large amount of radiation so that the mass-to-light ratio can become too small compared to observational values it is too early to rule out the black hole model because the black hole can consume most of the stellar debris in time scale much shorter than mean time between two successive tidal disruptions. Finally we outline recent effort to simulate the process of tidal disruption and subsequent evolution of the stellar debris numerically using Smoothed Particle Hydrodynamics technique.

  • PDF